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Abstract

An economy is defined as transparent if its participants truthfully re-
port their wants or needs and accurately represent objective reality. The
goal of a transparent economy is to combat the environmental collapse
and to reduce unfair distribution of goods and labour. To reach this goal,
several considerations suggest a moneyless economy, where scarce goods
are distributed using weighted gains. This is a simple case of rationing
along a fixed path (Moulin 1999, J. Econ. Th. 84, pp. 41-72). The weight
is the accounted effort or effort index, that is, the accounted labour dura-
tion per maximum possible labour duration, where ‘accounted’ is defined
as follows. People report each others’ effort. They estimate the effort in
advance and the total estimate is a ‘soft bound’ above which the effort
may be capped to yield the accounted effort. This soft bound discourages
overreporting the efforts.

The main question is how to discourage collusion when estimating the
effort. (Question 12 on page 14.) For example, two participants report
great estimates of effort and register equally large efforts of each other
without having worked at all. A threat of inspection of the real effort dis-
courages collusion, but probably insufficiently. Several other (research)
questions remain to be answered in order to improve or reject this econ-
omy.

This document is only a sketch of design considerations. Four appen-
dices seem to offer novel ideas, but only the last appendix presents a us-
able result: merging for fixed-path rationing (Appendix A.3), need-based
cake cutting with random selection (Appendix E), a planning game (Ap-
pendix F), and bankruptcy with claims guarantees (Appendix G) which
is used to impose the soft bounds on the effort index.
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1 Introduction

The fraud age – that is the term, in the same vein as the stone age and
the bronze age, which Paul Lafargue coined to characterise two centuries
of capitalism. In his view, fraudulence is omnipresent in capitalism and
licensed by the delusional need for competition and labour, which leads
to exploitation, waste, and ‘false needs.’ [23, pp. 11, 47-49]. That was
in 1883. We would now call this age the frauducene, a word more specific
than ‘anthropocene,’ which refers to human activity as the cause of envi-
ronmental collapse. Overproduction, overconsumption, competition, and
inefficiency are the main drivers of resource depletion, mass extinction,
and pollution, such as by carbon dioxide, which leads to global warming
of the atmosphere and the oceans [8, 37]. The free market still bears the
same traits of fraud as it had in 1883, such as planned obsolescence and
deceptive advertising. Additionally, it engenders the delusion that there
is little room or need to take responsibility, in particular, for acknowledg-
ing reality. So does the hierarchical organisation, where superordinates
and subordinates can hold each other responsible. This is not to say that
capitalism as such is the culprit. Rather, it illustrates this document’s
point of departure – the human propensity to use any system to sustain
illusions and to deceive.

Therefore, instead of an economic mechanism that encourages such
fraud and that conceals reality, we need a transparant economy, which
is defined as the distribution of scarce goods and arrangement of labour
that meets two conditions. First, true needs or wants are elicited, not by
a hierarchical organisation (or authority) but by participants themselves
because they engage in a mechanism (or instititution) where truth-telling
is most profitable, so-called strategy-proofness. The second condition is
the accurate representation of objective reality so as to prudently account
for it. At this point, some authority may come into play, for example, by
limiting resource use. Possible boundary conditions are Pareto efficiency
(no goods are wasted) and the profitability of joining the economy, which
goes by the technical term ‘individual rationality.’ A ‘classical’ exchange
economy can not meet these two conditions and strategy-proofness, ac-
cording to a theorem of Hurwicz [4]. Fairness in some sense is another
desideratum. However, many combinations of such conditions are subject
to similar impossibility results.

This foretells that a compromise should be struck when designing a
transparent economy, which is the purpose of this document. The econ-
omy focuses on small (possibly overlapping) groups, so that any ‘loop
holes’ (options to collude or misreport otherwise) are not utilised because
of people’s propensity to cooperate, especially in small groups on which
they depend for a considerable time.

In this document, only design considerations are presented that lead to
several variations of a model based on fixed-path rationing [30]: Once the
disadvantages of one variation are identified, they are overcome in a next
variation, which in turn reveals other disadvantages, and so on. These
variations and considerations are presented to ‘map the territory,’ that
is, to allow reconsidering assumptions and to prompt finding yet other
variations of the model. A hybrid search revealed no similar model. To
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identify this economy in advance, it is called eranism, after the classical
Greek word ‘eranos’ for generalised reciprocity (‘mutual aid’) as explained
in Appendix C.

This document is organised as follows. Section 2 presents some de-
sign considerations for a transparent economy, which lead to fixed-path
rationing. Such rationing (or rather: distribution) is the basis for sev-
eral variations, treated in Section 3. In Section 4, multiple groups are
discussed. The conclusion (Section 5) is that no design can result at this
stage.

2 Design Considerations

Following are the considerations for choosing a particular implementation
of the desired small-scale, transparent economy. These considerations are
listed to explain why other implementations are inferior.

There are many disadvantages of money [24, pp. 94, 133], which all
seem to spring from money’s concealment of physical and social realities by
its mediation between consumer and producer. Similarly, in centralised,
hierarchical organisations, departments and superordinates are interme-
diate entities that invite to hide realities, more specifically, to eschew
responsibilities. The responsibility becomes ‘free floating’ or ‘diffused’
such as in the banking business [20, p. 307] but the lack of organisation
can equally induce a lack of responsibility or ‘free riding’. (Additionally,
money and organisations may also ‘lead a life of their own,’ so-called reifi-
cation.) As money and centralised organisations conceal realities, any
transparent economy best is moneyless and arranged with the least possi-
ble centralised management, which may be feasible using mechanism and
institution design.

The first goal of a transparent economy is to accurately represent needs
or wants. To that end, a mechanism (or institution) should be found with
which telling the truth is most profitable for everyone. Such a mechanism
is called strategy-proof or incentive-compatible.

A preliminary question is whether needs or wants should be elicited.
An amount of goods or services is a need if without it, one physically
malfunctions, and a want if it gratifies psychological desires. The needs-
wants dichotomy may be deceptive because the wanted objects also have
meanings and therefore are as essential as needs, whereas needs have only
increased due to the complexity of society [16, pp. 335-338]. Be that as
it may, in the case of great scarcity, need-based mechanisms (triage) may
be mandatory.

Question 1 Does a mechanism exists for which telling one’s needs (in-
stead of wants) is strategy-proof? The needs are private information, to
be distinguished from objective needs, as in welfarism [29, p. 166]. Should
the need be modelled as a dip instead of a peak? For single-dipped pref-
erences, strategy-proof mechanisms select from a very limited number of
choices [6] or (at least for non-probabilistic or infinitely divisible goods)
allocate all to a single person [13]. A candidate solution is a two-stage pro-
cedure when there are both single-peaked and single-dipped preferences [2].
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Or should needs be modeled as a threshold for individual rationality, that
is, participation? A still unsatisfactory such approach is in Appendix E.

For now, consider preferences (wants) that are single-peaked, possibly
peaking at the maximum available quantity. Such preferences do not lead
to well-known impossibility results [7].

The second goal of a transparent economy is to accurately represent
any undesirable state of affairs or prospect of the future, a future which is
often discounted. A faithful representation of reality or prediction can par-
tially be achieved by creating artificial scarcity to prevent greater scarcity
or to reduce pollution, such as by carbon dioxide. This requires a ra-
tioning procedure, which is needed anyway to distribute scarce goods in a
strategy-proof, efficient, and possibly fair way. (If goods are never scarce,
there is less need for an economy.) It seems inevitable that a centralised
body determines the amount to be distributed but the exact determination
is a complex affair that is beyond the scope of this document. However,
the desired rations (requests for a portion of the scarce good) are not
determined by an authority but declared by the participants themselves,
where strategy-proofness discourages misreporting these requests..

If the distribution of goods (with preferred amounts) is to be ef-
ficient and strategy-proof, and if it meets two ‘bouundary conditions’
(consistency and resource-monotonicity) then it must be fixed-path ra-
tioning [14, 30]. For now, restrict it to the method of weighted gains.
See Appendix A for details. Also, let the weight in the weighted gains be
the effort or effort index, that is, labour duration per maximum labour
duration, to be elaborated on shortly.

Example 1 To illustrate that it is fair to have the weights equal effort,
let three participants A, B, and C have claims 2. Their weights (relative
efforts) are 1

6
, 1

3
, and 1

2
. To be distributed is 5 but requested is 6. The

allotments are 1, 2, and 2 respectively. So, the request of A is capped
because he or she exerted little effort and B obtains twice as much as A
because he or she worked twice as hard. The allotments to C and B are
equal though C worked harder than B but C gets the requested portion.

This procedure also allows generalised reciprocity, as explained in Ap-
pendix C. For, the supplier (supplying group, owner of the store) gives
goods to others but does not mind who gets them, as long as people (the
beneficiaries, perhaps) worked for the group. The beneficiaries, in turn,
in principle do not care where the goods or services come from.

In this model, one has to work in order to obtain goods. Also, asking
more goods often implies that somebody else works longer, therefore can
gain a higher effort index, and thus obtain more goods. So, the preference
has a peak located below the maximum available amount. (A group effort
bound may further reduce the position of the peak.)

Participants report each other’s effort (labour duration and kind of
labour). To prevent overreporting, there is an upper bound to the effort:
overreporting would imply that fewer time is left in case some unexpected
effort needs to be reported; few would be willing to work when the effort
is not fully accounted for. (The effort is capped for a period of short dura-
tion, but all effort is eventually accounted for in longer periods, so nobody
works for nothing, except when surpassing all labour time bounds).
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The bound to the reported effort is estimated from the expected ef-
fort, but the report of this estimate may be untruthful. The weights
are relative: if everyone works twice as hard then the awards stay the
same. The main idea is that overestimating effort is no use because the
total estimate is distributed over the group; so, when overreporting the
effort according to the overestimated effort, everyone would have to work
harder but not gain any weight for the goods distribution. So, there is
no pointless competition for the sole purpose of raising the effort index
(the ‘income’). However, the determination of the bound is not easily
made (group) strategy-proof as a recurring problem is collusion, which is
treated from Section 2.1.6 onward. This will lead to considering an alter-
native method for faithful representation of reality instead of preferences:
inspection of work or the threat thereof.

In the following, this idea is developed further. Several variations
emerge, each having disadvantages.

2.1 Distribution Basics

Following are some elements common to every variation considered below.

2.1.1 Classification of Goods, Time, and Labour

Goods are commodities, energy, and the like, but not services, which are
activities that modify or (help to) produce something, such as baking and
cleaning the bakery.

Goods are partitioned into kinds of goods, each kind having a time
period at the end of which the good will be distributed.

These time periods have fixed duration and all periods of a certain
length for several kinds of goods start at the same time for each group.
For example, daily bread and monthly car distribution.

Work is also partitioned into kinds of labour and each kind is equipped,
for each time period, with the (physico-mental) maximum labour duration
a healthy person can work while being able to recuperate, physically or
mentally, within a certain (yet unspecified) amount of time. A scientific
committee would have to determine these times per area, season, time of
day, and so on. For example, daily maximum labour durations are 4 hours
open-air mining in the tropics and 6 hours of monotonous moving-band
work.

An effort, effort index, or labour intensity is the labour time divided by
the maximum labour time. A labour time must always be registered along
with the labour type to compute the effort.1 To continue the example,
2 hours moving-band work (effort 2/6) and 2 hours tropical mining (effort
of 2/4, equivalent to 3 hours moving-band work) totals to 5/6. So the
efforts can just be added. To prevent working longer than the maximum,
labour times are unconditionally truncated, which implies that the sum
of efforts is truncated at 1. The mathematics of this implication are not
reproduced here.

1When registering labour time, the maximum labour duration is not entered directly but
via the registration of a labour type, which determines the maximum labour duration. This
avoids underreporting the maximum duration.
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2.1.2 Goods Distribution

As motivated above, goods are distributed using fixed-path rationing. The
so-called N -path of a participant is a claims guarantee (claims below it
are honoured, claims above it return at least this guarantee) but this
N -path is a (fixed) function of some parameter. For now, this function
is multiplication by a weight which is set equal to the accounted effort
(a number between 0 and 1). This accounting is treated below but, as
mentioned before, unaccounted effort is still valid in longer periods. The
weights are scaled such that they add to 1 but this scaling is not necessary:
see Appendix A.1. All in all, an effort has a ‘value’ that depends on the
length of a period, the efforts of others, and therefore, even the calendar
time.

Notice that no effort means no goods in this basic model. Further, an
effort index not used for goods distribution in one period can be used as
savings for later-on, as when one does not work, but up to 1, the physico-
mental maximum effort. Some people (for example, the chronically ill
who have not accumulated effort indices) may get priority and for each
priority, fixed-path rationing is applied. See Appendix B.

Question 2 Are there alternative ways for giving priority? Can the N-
path process an effort index other than by multiplication with a weight
for a fair distribution? Or should fixed-path rationing be generalised to
sequential allotment [5]? Whatever the case, who is entitled to determine
and enter the priorities?

In the sequel, suppose it is fair to let the fixed-path distribution incor-
porate the labour efforts.

2.1.3 Labour Distribution

Each participant can have several roles: Employee or assistant h (‘helper’),
who works; employer or client c, who benefits from this work; and at-
testor a, who registers the effort, be it as a client or on behalf of others.

Participants may feel forced to accept jobs in order to collect an effort
index but they should be able to change jobs (under the usual jurisdic-
tion). Effort for studying or practicing may also be registered. If multiple
employees offer to do a job, the employer will select the employee having
the best combination of expected quality of work and labour duration.
If there are too few employees to do the same kind of work for multiple
candidate employers, then the employees can select the employer offering
the best combination of properties, such as willingness or ability to report
the longest possible labour duration.

Question 3 Is there a fair mechanism, including deliberation, for match-
ing employers and employees that replaces such a ‘free labour market’? If
there are not enough candidate employees, should the scarce effort index
(for expected work) also be distributed by fixed-path rationing for employ-
ees who are more or less exchangeable? This may be possible both for
continuous and discrete lapses of labour time.
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2.1.4 Distribution Groups

A distribution group is a limited number of people who work and obtain
goods based on their effort from the fixed-path rationing. A more or
less fixed group causes preferences for goods to have a peak below the
maximum obtainable amount of goods, as expounded in Section 2.1.5.
People outside a group may also work for the group or obtain goods from
the same fixed-path rationing but only if certain conditions are met, as
investigated in Section 4.

To let bounds on labour time suppress collusion, the group should
cover a wide range of professions. (This condition has not been formalised
yet, nor have arrangements for joining or leaving a group.) Working in
a group of rather constant composition will also make a good reputation
important or more generally, allow for cooperation. Finally, a group-based
economy has the advantage that is can be introduced stepwise.

2.1.5 Single-Peaked Goods Preferences

The preferences for goods have a single peak but the peak need not be
the maximum a participant could possibly get: the more goods one asks,
the more labour is needed for their production, but this labour generally
is done by others, who therefore collect more weight for the fixed-path
rationing. So, the most preferred amount may be less than the maximum
imaginable amount, but this peak will be hard to estimate. In one varia-
tion (Section 3.1.3) an upper bound to the group’s labour time restricts
the duration for registering the duration of unexpected work: asking more
goods, hence, more labour time, further restricts this duration, so that also
moves the peak away from the maximum possible amount.

Question 4 Can participants reasonably estimate the peak?

Estimation aside, ordering goods but not fetching any because one
did not work, bears the risk that others have a greater effort index for
obtaining other kinds of goods.

2.1.6 Effort Registration and Collusion

Of course, any assistant could easily overreport his or her own effort.
Therefore, let the effort be registered based on independent inspection
or judgement. To that end, the attestor (usually, the client) registers
the effort of the assistant. The attestor can not always inspect but the
assistant may also not know what the attestors knows.

Question 5 Is there an incentive for the assistant to report the true effort
himself or herself, or to report it truthfully to the attestor? The latter case
is the problem of the principal.

The assistant and the attestor may use the registration to collude, that
is, the attestor overreports the labour duration (or the kind of labour) of
the assistant and the assistant reciprocates this favour. For example, the
assistant gives the surplus of the goods obtained by the overreporting to
the attestor; or the assistant overreports labour of the attestor done for
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the assistant in the role of client. These types of collusion are defined
more precisely in [10].

When estimating bounds to the effort, the candidate assistant and the
candidate client may prepare such collusion (between assistant and client)
by colluding in a similar way.

Without collusion, and even without bounds to the effort, a client will
not profit directly from reporting the effort of an assistant at all (let alone
more than the real labour time) because it allows the assistant to obtain
more goods. However, underreporting the effort will give the client a bad
reputation. This problem is similar to ‘not paying the bill’ and may be
addressed likewise.

To summarise, collusion when reporting effort is suppressed by bounds,
of which the determination, however, will turn out to be susceptible to
collusion.

2.2 Distribution Extensions

The above basics are used to explore variations for a single group below.
Prior to that, the following additional requirements for distribution should
reduce the number of variations, also for interaction between groups.

2.2.1 Distribution of Half-Products

Products are composed of secondary products which in turn consist of,
or require, tertiary products, and so on. Consider the case that a single
producer produces the primary product (bread) at once in great quantities
to be distributed amongst several customers. Grain is needed and grinding
the grain requires motor oil, the tertiary product. Before the distribution
of bread, there would have to be a distribution of grain based on each
customer’s effort (weight) for bread, but this requires the distribution of
oil, based on the same weights. One problem with this procedure is the
enormous delay. Any rationing must compare demands and therefore,
wait until a pool of demanders is formed.

Question 6 Can production anticipate demands? Would that require that
the attestor inspects the store to ascertain that goods must be produced
ahead because of expected demand, not just to gain an effort index? Or
would some reallocation rule [41] be of help?

2.2.2 Goods Distribution to Intermediaries

People who want bread should not need to apply separately for grain. It
would be more practical if the baker merged their requests of amounts of
grains to a single amount of grain.

In principle, the baker would apply for grain (produced in the same
group) on the basis of his or her own effort, which primarily will be for
baking bread. On the one hand, the baker is motivated to exert effort
simply to stay in business. On the other hand, this would make the
customers dependent on this effort, so they will insist someway that the
attestor overreports the baker’s effort, thus encouraging fraud. (If the
baker needs the grain from another group, he or she probably has no
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effort index to use for the distribution in that group. This is addressed
below.)

Question 7 Which joint claim and joint weight combinations are most
likely to let an allotment be close to the sum of allotments from separate
claims and weights? Or should the fixed-path rationing be replaced with
a mechanism that allows combinations which award an allotment close to
the sum of individual allotments? Appendix A.3 poses the question more
specifically and gives some illustrations. For the case where participants
have initial endowments, see [10]. In view of Question 20 on page 24, this
question may also become not applicable.

2.2.3 Goods Reuse, Maintenance, and Reclaiming

Maintenance and recycling of goods in one’s possession is encouraged as
follows.

Maintenance of an object is work one does not only for oneself but
also for future users of the object. The object has no inherent economic
value, in particular, it does not ‘store’ any value of the effort, a value
which is uncertain anyway. For example, someone has obtained a house
for only 0.001 effort index, but it would cost the group a year to rebuild if
not maintained properly (not accounting for the time to manufacture the
half-products.) If the house becomes available, the future owner may have
exerted effort 0.999 for it. By letting the maintenance effort be attested
by someone else, maintenance is encouraged to the benefit of future users.
The problem still is, that nobody may schedule maintenance because the
efforts are accounted relative to each other, that is, the weights in the
distribution stay the same.

As to recycling: Goods to be distributed are in a store, possibly in
multiple locations. Each store has an attestor who reports the time for
bringing or preparing the good, perhaps even for having maintained it.
This also prevents that people produce the good, have their labour effort
reported, but do not bring the goods to the store. A ‘civil servant’ might
collect goods for the benefit of the community or future generations.

Question 8 Do stronger incentives to maintain and recycle exist?

Reclaiming goods is also an option: A consequence of basing fixed-
path rationing on weights equal to the effort index is as follows. If there is
only one person applying for the good, this person does not need to have
exerted any effort. This is fair unless it occurs that shortly after, other
people need the same good. For example, someone urgenty needs a good
and therefore, no long-term allocation is run (the object was identified as
having a one-second period allocation cycle.) An hour later, someone else
also urgently needs the good. The good is now supposed to have been lent
and is allocated after all on the basis of efforts. It may be reclaimed but
it depends on circumstances whether it can and may be returned. If the
interval is not an hour but months or years, one of the potential problems
is large-scale registration of goods and their owners.

Question 9 Would the expression ‘benefit of the community’ and lending
become pretexts to inappropriately reclaim goods from their owners?
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2.2.4 Effort Index Utilisation

Someone who exerted great effort will profit from the same effort in the
distributions for every kind of good, where the labour period is measured
for the duration that coincides with the period of the goods distribution.
Such multiple profit from the same effort may be considered unfair, but it
should also be borne in mind that application to one type of good may still
be a request for various subtypes. A solution would seem to be deleting
the labour time once it has been used as a weight in the distribution; then
participants must make a (difficult) decision which amounts of effort to
‘pay’ for the goods; moreover, the weight would no longer be exogeneous
because it would be determined along with the goods requirements.

Question 10 To what extent can fixed-path rationing be extended to the
simultaneous distribution of various kinds of (infinitely divisible) goods?
Such an extension exists for the uniform rule [1, 27] and for sequential
allotment [9] (which for at least one kind of good can model fixed-path
rationing).

Participants can shift the effort index to later periods, not only for
vacation but also to have the largest weight in the distribution of all
goods in a certain period.

Question 11 Is such extreme reuse of the effort index by time-shifting
improper and if so, how can it be avoided?

3 Design Variations

The above design is now elaborated in various ways.

3.1 Effort Bounds

To suppress the aforementioned collusion when estimating and registering
effort, consider imposing an upper bound to the effort (that is, the effort
index) for each time period and for periods of different length. (Whose
effort exactly is bounded, is investigated below.) The weights in the distri-
bution for a certain period will only contain (account for) the effort below
that bound of the corresponding period: this weight is the accounted ef-
fort. The remaining effort is accounted for in a longer period for the part
that it overlaps with the labour period, at least, if the bound of that pe-
riod allows so. There should be such a next bound to avoid overreporting
despite capping the effort for shorter periods.

The accounted effort is awarded at the end of the labour period accord-
ing to some formula, of which the exact nature depends on the situation.
Without such formula, the accounted effort would be computed in the
course of time, that is, in the order of registration of the effort. So, the
earlier the work would be completed, the greater the accounted effort
would be. This would force people to have their work completed and
registered as soon as possible, phenomenon which could be called ‘labour
rush.’ This obviously is undesirable in many respects.
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As briefly explained above, the upper bound discourages overreporting
the effort because overreporting leaves less time for finding assistance
in case of emergencies, that is, unexpected, important work. (Also, it
prevents labour for nothing else than earning an effort index but without
any other purpose.) For example, a plumber is suddenly urgently needed
but is not willing to work because only a portion of the effort is accounted
for, even though the plumber can use the truncated effort index for a
longer period. This is why a variety of professions should be represented in
a group: such a variety increases the probability that ‘emergency workers’
are among them.

The bounds can be fixed or estimated, as expounded below. First,
some notation is needed.

3.1.1 Notation

For any vector (or column) v introduce 1v =
∑

i
vi, the total of v. It

can be viewed as the inner product of the row 1 := (1, 1, . . . , 1) and v.
For matrix mrc (where r is the row index and c the column index) define
1cm :=

∑
r
mrc, the column total of m. So 1.m is a row. Define 1rm :=∑

c
mrc, the row total of m. So 1.m is a column. Let 11 be an operator

defined by 11m =
∑

rc
mrc, the grand total.2

3.1.2 Fixed, Exogenous Effort Bounds

Let ehc be the effort exerted by assistant h for client c. Let êhc be the
reported effort. To start, consider an individual bound U = uh, inde-
pendent of h, on the total reported individual effort 1hê =

∑
d
êhd of any

assistant h, where the sum is over the clients d whom h worked for. (Trun-
cation above the maximum physico-mental effort is omitted henceforth.)
If the magnitude of U is not of one’s liking, one could join another group
or create one with a more suitable individual upper bound. However, it
will be hard to tell what is a realistic magnitude, the magnitude would
have to be determined by a single person (who creates the group) and
different times of year or month require different upper bounds to the
effort.

For a group of possibly variable size n, these problems are also present
if a bound Un is imposed on the reported group effort 11ê =

∑
id
êid.

3.1.3 Estimated Effort Bound

As a fixed effort bound is problematic, let a bound on the effort be esti-
mated. Such bounds are best estimated by assistants (rather than clients)
because they are familiar with the kind of work. Therefore, each assis-
tant h makes an honest effort estimate fhd of the effort ehd for various

2The expression ‘11’ should be conceived as a single symbol because the ambiguity in the
notation 11 can not be resolved, as is clear from the following. Let 1′ be 1 as a column
instead of a row. So m1′

r =
∑

c
mrc. Let 1. be redefined by 1rm := m1′

r. So 1(1.m) =

1(m1′
.) =

∑
rc

mrc. However, neither 1(1.m) nor (1.m)1′ are defined so the brackets can not
be omitted.
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candidate clients d, multiple jobs for d by h taken together. The reported
effort estimate is f̂hd.

Let 1hf :=
∑

d
fhd be the total reported effort estimate, where the

summation is over clients d whom h worked for. If h is honest, then 1hf
obeys a preference relation (weak order) which has a single peak ph at the
honest estimate. The weak order expresses the preference for the objec-
tively best (‘honest’) estimate. When dishonest, 1hf follows a preference
relation with a single peak 1 at the highest possible effort, which is less
than or equal to the physico-mental maximum effort. h may strategically
misreport the estimate as 1hf̂ , which may be less than the peak (the
highest possible effort 1) so as not to raise suspicion or for other reasons,
depending on the mechanism. Let xh be the award, which is based on the
accounted effort of h.

There is a unique type of efficient, symmetric, and strategy-proof
mechanisms, the generalised median rule, which selects the median so-
cial alternative from a set of alternatives after addition of a number of
phantom alternatives, provided preferences are single-peaked. Let the so-
called social alternative be the row p = (ph | h), where ph are honest
estimates and the h runs over the group’s assistants, who are ordered
such, that p obeys a so-called leximin ordening. The median rule does
not seem to apply for two reasons. First, if p̂ is a misreported alternative,
it would be strategically selected such that the outcome is nearest to the
honest (‘true’) estimate. However, a dishonoust agent has no such pref-
erence. Second, the median rule applies when an endowment E is to be
distributed; by choosing a single phantom row (E/n, . . . , E/n), the uni-
form gains rule (the uniform rule for demand exceeding E) results [32].
However, in the case of estimating efforts, the total estimate E is not
exogenous.

Question 12 Can a generalised median rule be made to apply and allow
(group) strategy-proof and/or collusion-free estimation of efforts? Or does
an alternative mechanism exist that elicits honest estimates, for example
one based on needs instead of single peaked-preferences or on (the threat
of) inspections of the real effort? (See Appendix E for trial need-based
mechanisms.) Does the revelation principle [25, p. 291] apply?

Answering this question requires a definition of the accounted effort xh.
Such a definition is given in the following but that does not answer the
question. Once xh is defined, it will become apparent that collusion other
than just group-strategy-proofness necessitates adapting the present ap-
proach.

Suppose the total reported effort estimate 1hf̂ were a bound to the
labour of h. So xi = min{1hê,1hf̂}. If the total reported effort 1hê of h
approaches the bound 1hf̂ , then h would mind if some client d overre-
ported the effort ehd to the effect that the bound is surpassed. (Ignore the
fact that unaccounted effort is accounted for during longer periods.) So,
the bound discourages overreporting the effort (as a first step in collusion
for such reporting). However, h may simply overreport the bound 1hf̂ .

Therefore, consider a bound on the reported group effort 11ê =
∑

id
êid.

Let the group effort bound be 11f̂ =
∑

id
f̂id. The 1hf̂ will turn out to

be a so-called soft bound.
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The first purpose of the bound 11f̂ is to suppress any overreported
effort 1hê: Suppose that the group’s reported total effort so far is Q;
that h worked ehc for c in reality; and that Q + ehc < 11f̂ but Q +
êhc > 11f̂ . That is, if client c overreports, then the group bound is
exceeded. Consequently, if c needs an assistant for emergency labour,
then no assistant will have his or her effort accounted for in full for the
present period; moreover, if the assistant needs emergency labour, he or
she is in the same position as the client. This, again, is why several
professions should be present in the group.

The second purpose of the group effort bound 11f̂ is to suppress any
overestimated individual effort 1hf̂ by letting an overestimated group ef-
fort 11f̂ be distributed more or less over all participants, who therefore
all can work harder (which includes working longer). If most would de-
cide not to work harder but the rest would, then this rest would profit
from greater weight in the goods distribution because the accounted ef-
forts are reckoned relatively. So, everyone will try to work harder only not
to get behind but possibly without any other purpose. The overall effect,
however, is that the extra work may not substantially change anybody’s
weight for the goods distribution. All in all, the most effective strategy for
all would be not to overestimate effort. The following is an investigation
into how an individual assistant can be discouraged to yet overestimate.

The way individual efforts are capped so as to distribute the group
effort bound is explored as follows. Suppose the total reported group effort
exceeds the group effort bound: 11ê > 11f̂ . If only the last reported
efforts were capped, then the ‘labour rush’ would result, so individual
efforts must be capped using a formula at the end of the labour period.

To determine that formula, consider the following. As 1hf̂ should not
be an individual bound (as established in the beginning of this subsection),
xh > 1hf̂ should be possible. Let the reported estimated group effort
11f̂ be a (hard) bound to the group’s total accounted effort: 1x ≤ 11f̂ .
Further, the accounted effort xh for no h can exceed the reported (possibly
true) effort 1hê, that is, xh ≤ 1hê, because it would be unfair if the
accounted effort were more than the reported, and possibly true effort. In
case 1hê ≤ 1hf̂ for all h in the group, then xh = 1hê because all stayed
below their estimate. The surplus estimate 11f̂ − 11ê is not distributed
over all because x already is at its maximum value. In case 11ê > 11f̂
then someone gets strictly less than the reported (possibly true) effort:
xh < 1hê for some h. (For, otherwise 1x ≥ 11ê > 11f̂ , contradicting
1x ≤ 11f̂ .) That poses a risk, especially if xh is far less than 1hê, and
for that reason, 1hf̂ is called a risk boundary. To reduce this risk, for
all h guarantee that xh = 1hê as long as 1hê ≤ 1hf̂ . So, one’s effort is
fully accounted for whenever it is less than one’s estimate. The reported
and possibly true effort 1hê can be considered as a claim. Therefore, the
general name for 1hf̂ is claims guarantee. All in all, 1hf̂ is both a risk
boundary and a claims guarantee, and therefore goes by the more neutral
name of soft bound. The accounted effort of h therefore basically is:

xh :=
{

1hf̂ + · · · if 1hê > 1hf̂ and 11ê > 11f̂
1hê otherwise

(1)

Suppose the dots were zero. Consider assistant h whose claim exceeds the
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soft bound: 1hê > 1hf̂ . As long as 11ê ≤ 11f̂ , the accounted effort is
the full effort: xh = 1hê. As time goes by, 11ê increases until it exceeds
the group bound: 11ê > 11f̂ . At that moment, xh suddenly would drop
to 1hf̂ .

Example 2 Let 1·ê = (3, 4) and 1·f̂ = (2, 5) so 11ê = 7 = 11f̂ . Al-
though 11ê = 3 > 2 = 11f̂ still x1 = 3. However, agent 2 now works a
little harder, 12ê = 4.001. So 11ê = 7.001 > 7 = 11f̂ and x1 suddenly
becomes 2.

For a smooth transition, the dots should be other than zero. Let the
suppliers

S := {i | 1if̂ − 1iê > 0}
be the indices of the surplus σi := 1if̂ − 1iê from the overestimation for
i in S. Let the demanders

D := {i | 1if̂ − 1iê < 0}

collect the indices of the demand δi := 1if̂−1iê from the underestimation
for i in D. Distribute any total surplus 1σ over any demanders. The
reason is not that all surplus estimates should be used because such surplus
is ‘wasted’ if everyone’s effort is below the estimate and accounted for
exactly. One reason for distribution is that the transition between 11ê ≤
11ê and 11ê > 11f̂ is smooth, as proven in Appendix G. The other reason
is that (without collusion) assistants are encouraged to honestly estimate
their efforts. This is seen as follows. First, consider overreporting the
estimate 1hf̂ , that is, 1hf̂ > 1hf . It more probably is an overestimation
of the registered effort (1hf̂ > 1hê) than when honoustly estimating,
1hf̂ = 1hf , so probably, the surplus σi is distributed over others, who will
get more goods in the fixed-path distribution. There is a lower probability
that it is an underestimation still, 1hf̂ < 1hê, than when for an honoust
estimate, 1hf̂ = 1hf , but if that happens, then the demand must be met
by supply from others. Second, consider underreporting the estimate,
1hf̂ < 1hf . The above cases are the same but with probabilities reversed.
So, h is more likely to be in demand than to supply some effort index. Both
cases are not advantageous. So, this mechanism would be stratege-proof
to misestimation of effort. Further considerations are in the ‘planning
game’ described in Appendix F.

The effort bound needs to include an estimate U for unexpected effort,
that is, of work to be done for client c by a yet unknown assistant h.
If U were too large, it would not deter attestors from overreporting the
effort 1he of an assistant h because the attestor may turn out to be a client
needing an assistant for unexpected work; instead, it would invite everyone
to exert more effort, or at least let more effort be registered. Therefore,
each potential client c estimates the ‘expected unexpected’ effort Nc to be
needed and U := 1N . Alternatively, each candidate assistant h estimates
such effort Xh to be exerted and U := 1X. In both cases, U may be
unrealistically high.

Question 13 How can the unexpected effort of a group for a certain time
interval be realistically (so, honestly) be estimated, in particular, if no
statistics are (yet) available? See also Section 3.3 on funds.
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Let

α :=
U + 11(f̂ − ê)

11(f̂ − ê)|D
then a formula would be:

xi =
{

1if̂ + (α− 1)(1if̂ − 1iê) if 1iê > 1if̂ and 11ê > U + 11f̂
1iê otherwise

(2)

This is proven in Appendix G where the claims are ci = 1iê, the soft
bounds are µi := 1if̂ , and the endowment is E := U + 11f̂ .

Although this formula is applied at the end of a time period, assistants
may well predict that the group bound is soon to be exceeded because ef-
forts indices are public. Although a labour rush is avoided, these dynamics
allow the following estimation game.

Consider collusion when estimating the efforts. Suppose everyone es-
timates honestly except participants i and j, who use dishonest overesti-
mations f̂ij and f̂ji; participant j promised to i to enter an overreported
effort êij and vice versa. (Other reciprocations are also possible, for ex-
ample, share in the extra goods thus obtained.) So, 1if̂ and 1j f̂ are also
overestimations. As long as the group’s bound is not exceeded, 11ê ≤ 11f̂ ,
assistants h may report more than estimated, 1hê > 1hf̂ , and still have an
accounted effort index xh = 1hê according to Equation 2 for U = 0. These
xh compete with xi and xj so i and j willl report êji and êij high enough
to let 11ê > 11f̂ . Then all accounted effort xh drop, be it smoothly,
also for h = i and h = j, but there loss is partially imaginary or even
completely if they have not worked at all. However, would attestors be
truthful (or one of the colluders defect by not registering the promised ef-
fort) then an overestimated effort is not used in full and the excess may be
used for accounting more effort of those who worked more than estimated.

Can three or more players be deterred from collusion by increasing the
‘punishment’ for one of the colluders if the other defects, that is, not live
up to the deal to collude? If the surplus f̂i − êi is given to reporter j
then it would seem to be attractive for j to defect, that is, report far less
than initially convened, as in the prisoner’s dilemma. The distribution
functions ψ and ρ in Appendix A.1 and Appendix G.6, respectively, might
take care of such arrangements. This arrangement invites underreporting
and thus discourage collusion, but j may find establishing a good relation
with i more important (in order to repeat the collusion) than defecting.
See the planning game in Appendix F for some additional considerations.
A disadvantage is that honest overestimation would equally be punished.

In conclusion, this ‘overestimation game’ provides no guarantee that
effort estimates are honest. The underlying reason may be that labour
estimates can be made ‘out of thin air.’

Question 14 Does a procedure exist to elicit the true effort estimates and
avoid collusion? A Groves mechanism may choose the group effort bound
as a ‘social alternative’ but such mechanisms generally are susceptible to
collusion. Should this cooperative game be cast to a non-cooperative game
first? (The starting point may be [34] according to [36].)

Another disadvantage of a group effort bound is that group members,
even in small groups, may imagine that, if the group effort is close to its
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bound, they will still be able to interest an assistant for emergency work,
a kind of ‘tragedy of the commons’. In the next variation, it is entirely
one’s own responsibility to keep away from the bound.

3.2 Effort Grants

As estimated bounds do not avoid ‘overestimation games’ such as in
Section 3.1.3, consider distinguishing between the reported effort index
(labour intensity) and an effort index to report it with. Let the effort
grant (or effort allowance) be an effort index granted to a client c with
which he or she can report the effort (labour duration and labour type)
of the assistant; once the effort is reported, that effort goes off the effort
grant, as if it were a purse of money to pay with. There is an effort grant
for each period and for periods of various lengths. The reported effort
cannot be used as an effort grant, so it is not a transferable entity, as is
money. Collusion in this model can be made somewhat unattractive by
the threat of inspections, as set out below.

Generally, a bound on the labour may be an obstacle to ambitious
projects. For, a fixed bound may leave no room for the project; if assis-
tants estimate the bound, the must agree with the project in advance by
making an estimate at all.

Question 15 Can the effort grant be turned into an effort index which
is (perhaps partially) earned? For example, by collecting earned effort in
an ‘effort purse’ (or ‘earnings’) with which to register the effort of others.
(The earned effort in the purse can no longer be used as weight in the
fixed-path distribution.) This may also circumvent the problem of collusion
when estimating the effort grant (or group effort bound). The dynamics
are yet unclear because the earned effort would be bounded by previously
earned effort. Moreover, the bound becomes more ‘sloppy’ (some may
amass earnings) and might allow overreporting and even the equivalent to
‘wage slavery’. The idea of an ‘effort purse’ recurs when discussing group
interaction, Paragraph 4.3.4.

For now, the focus remains on bounds.

3.2.1 Direct Effort Grants

As before, f̂hc is the effort for c estimated and reported by h. The estimate
may not be honest. The simplest determination of the effort grant of
client c is 1cf̂ =

∑
h
f̂hc, the total reported estimate of the effort to be

spent for c, where h runs over the assistants who will work for c. So, the
effort grant is like ‘money for free’ but time actually is for free too.

First, assume there is no collusion. For group effort bounds (Sec-
tion 3.1.3), the whole 11f̂ =

∑
id
f̂id was distributed over the assistants

to discourage overestimation of fhc as a large f̂hc. (For, overestimation
by one, for example to account for unexpected work, would allow all to
work harder but the weights would stay more or less the same.) Here,
distribute 1cf̂ =

∑
i
f̂ic only over the assistants i who worked for c. Let

1cê =
∑

i
êic be the effort reported for client c. Instead of Equation 1,
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Appendix G yields:

xhc :=

{
f̂hc + · · · if êhc > f̂hc and 1cê > 1cf̂
êhc otherwise

The dots are such that 1cx = 1cf̂ + U where U is an estimate of the
unexpected effort, as before: U = Nc (the estimate of effort needed by c)
or U = 1X|Γ(c) for Xh the unexpected effort to exert, as estimated by h,
and Γ(c) the set of assistants of c. The unexpected effort is hard to
estimate. This raises the following question.

Question 16 How to trustworthily register unexpected labour effort within
a group? From an ‘effort fund’? Should the group bounds on effort be
reintroduced for unexpected labour only?

Now consider collusion. The same ‘overestimation game’ can be played
as in Section 3.1.3 but at a smaller scale, as if in a group with a single
client. The simplest case occurs when c and h only ‘work’ for each other
and overestimate êhc and êch. Three or more assistants of cmay also easily
collude. In conclusion, collusion is not avoided and again allows to create
an effort index ‘out of thin air.’ Therefore, consider some amendations of
this procedure: apportioned and challenged effort grants.

3.2.2 Apportioned Effort Grants

Suppose 11f̂ =
∑

hc
f̂hc is to be split up in effort grants. Two members

may collude by promising each other overreporting and thus allowing effort
overestimation f̂hc. If one distributes 11f̂ using the uniform rule (that
is, the constrained equal awards rule [39, p. 42]), then everyone would
want, and request, the maximum in order to suppress collusion of others
when estimating effort or to collude after all by obtaining the largest effort
grant. The result will be that all effort grants are equal. That may be
unfair to those who really need a large effort grant. In other words, the
preferences may be truthfully reported, but the preferences themselves do
not reflect honest estimates of the effort.

3.2.3 Challenged Efforts

As a potential solution, introduce the challenge, that is, the possibility
of inspections. This is a proven model if inspections are rare or done by
dedicated personnel (Appendix D) but might not work well in this case.
The candidate assistants h have reported estimated labour efforts f̂hc for
various clients c.

Suppose the f̂hc are public, so 1cf̂ is public too. Assume that group
member b suspects that f̂hc is higher than really needed, for example,
because some assistant i exists who could do the same job faster and
just as well. (If h colludes with c, then c will not choose i instead, nor
can c be forced to accept i, because collusion is not sure.) Then b can
assign an attestor a or be one himself or herself to record the labour time
of h. (There can not be two attestors of the same job.) Suppose that
the attestor a is different from b and that the choice of b is mediated by
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a digital system so that the attestor does not know who is b so there is
no display of distrust. The attested labour effort, or the lack thereof, is
public: if the attestor does inspect, he or she can not be accused of being
suspicious because refusal would be public; and if inspection is impossible,
this would have to be explained. Without inspection by the attestor, the
effort registration must still be based on good faith. If b suspects that
attestor a will collude with h then b should try to attest himself or herself,
but then c and h will know that b distrusts them. Let B̂c := 1cf̂ be the
effort grant. Define new grants B̂′

c := B̂c − f̂hc and B̂′
a := B̂a + f̂hc.

That is, attestor a gets a portion of the grant of c to ‘pay’ for client c. If
the estimate f̂hc is overreported, then attestor a can report more labour
effort than when h reported truthfully, in which case the effort of h can
still be reported. Contrary to the inspection mechanisms in Appendix D,
overreporting poses no quantitive risk: the assistant keeps the prospect
of having his or her effort registered. The only disadvantage for c and h
is a potential loss of reputation. For c other than claimant or claimee,
B̂′

c := B̂c. The benefit of challenges is that the ‘overestimation game’ is
harder to play because in case of collusion, an attestor may replace one of
the players and defect, that is, not register the effort that was promised
by the other. A disadvantage may be that there are far more colluders
than inspectors or that inspections are needed too often.

Question 17 Can the revelation principle [25, p.291] be applied to reveal
the true estimated effort instead of having to rely on inspections of the
exerted effort, such as the challenge above and in Appendix D? Or a
collusion-free combination of the Groves mechanism and inspections [11]?

3.2.4 Stages for Challengeable Effort Grants

The effort grants model is recapitulated by traversal of the following
stages.

Request goods Group members report the (most preferred) amount of
goods of a certain kind and the time interval during which to obtain
that amount (by the latest and the earliest). The kind of good
determines the phase and frequency of the distribution moments.
The good is distributed at the earliest moment in the desired time
interval.

Request labour Each member creates, in the role of candidate em-
ployer c, vacancies for production labour and services.

For example, to bake 50 breads, the baker c estimates to be needing
5 people to do various jobs, each 20 hours a week. These jobs are
also for baking cakes and other delicacies, but no distinction is made
between fixed time (cleaning) and variable time (selling bread to a
single client). An attestor reports the labour times of baker and
personnel separately on behalf of all clients.3

3Why not ‘pay’ only the baker, who redistributes the labour time over personnel? Formally,
hours to be paid, after conversion to hours worked, are again used as hours to be paid, a
confusion of meaning, inviting hours to become a currency. Worse, there is no bound on these
hours anymore, because they can circulate indefinitely, as with money. Finally, it is also very
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Estimate labour time An assistant h makes an estimate f̂hc of the
effort ehc (labour time and kind of labour) to be made for client c
and estimates the start time of the labour. These estimates include
quotations of labour, some of which may be refused. The estimate
is final at the start of the smallest period which encloses the labour
period. The effort grant created for c (to ‘pay’ the assistants) is
1cf̂ =

∑
h
f̂hc.

Challenge Effort Estimates Any person b who suspects that assis-
tant h and client c collude when estimating effort ehc may indicate
an attestor a (or attest himself or herself) who registers the effort
of h. The effort grant Bc is diminished by f̂hc and Ba is increased
by the same amount, so the attestor a ‘pays’ instead of c.

Work and Report Efforts Each assistant exerts efforts, possibly for
unexpected labour. The attestors report these efforts using the effort
grants defined in a previous period. (The first period ever does not
start with goods distribution.) Long-running labour may have to
be partitioned into multiple jobs of which the labour time is to be
reported separately. Effort indices may be saved for later use.

Distribute Goods The goods are distributed (rationed along a fixed
path) at the end of the period, based on the requests and weights
which equal the relative accounted effort during the distribution pe-
riod that holds for the goods, where the accounting is according to
the formula for maximal allocation subject to soft bounds, as ex-
plained above. The whole effort index is reused for other kinds of
goods during the same period and for goods having a longer distri-
bution period.

After the distribution program ran, customers obtain their goods.

3.3 Group Funds

As an anticipation of multi-group considerations, consider actual funds.
The total estimated effort U + 11f̂ can be conceived as a fund for the
accounted effort, in particular, U for unexpected, emergency work. Two
more such funds are considered in the following.

3.3.1 Effort Index Funds

The accounted effort indices may be stored in an effort index fund to
apply for goods that serve the whole group or an arbitrary member of the
group, for example, to provide food for ill people who have accumulated
an insufficient effort index. The distribution may as well be based on
priorities.

Question 18 How much accounted effort indices should a person con-
tribute? When should an effort index be donated form this fund and how
large?

impractical to estimate the labour time of personnel: they, too, would want to be paid in total
for their personnel, like a babysit, and so on. In particular, what if the babysit works for two
servants of the baker? (Duplicate count). Or what if the baker is the babysit? (Loop)
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3.3.2 Effort Grant Fund

Some of the effort grants 1cf̂ , too, can be stored in an effort grant fund
from which to ‘pay’ assistants who suddenly must serve the whole group or
who could serve an arbitrary member of the group, as with a fire brigade.
However, this would simply amount to a construct similar to a total group
effort 11f̂ .

4 Multiple Groups

Perhaps a choice can be made between the following scenarios: group
overlap and interaction between groups.

4.1 Group Overlap

Not all goods can be obtained from a single group, so people may be part of
several groups. This would also diminish any kind of competition between
groups. Would a participant be able to distribute the maximum labour
effort 1 as portions over the groups, then choosing a very low such portion
would allow to attain an effort of 1 in that group without substantial effort.
So, the labour effort must still be computed with respect to the maximum
physico-mental labour duration.

4.2 Interaction between Groups

Consider groups A and B. Suppose client c in A\B is helped by assistant h
in B \ A. For example, c is transported by taxi driver h. The effort is
registered as êhc. Conversely, h needs goods from group A, for example,
lubrication oil. A request can also be made on behalf of consumers from B,
as when h is a baker. The case that h works for A as a whole in some
way is not discussed. The effort spent by h for group A may be his or her
own effort or from group B.

The procedure by which assistant h participates in the distribution
of goods (such as oil) from group A is as follows. Participating in this
distribution is an advantage for group A if h contributed to members
of A (strict recipocity). As contributions expressed in goods are generally
incomparable, impose the condition that h has worked for some c from A
(or for A as a whole, but that event is not further discussed). Generally,
let the effort of some assistant i from group X be reported as 1iê, so the
mean effort of X per assistant is ϵX := 11ê/HX where HX the number
of assistants in X. Consider the case ϵB > ϵA, so assistants from B are
expected to work harder than those in group A. Then members of B
who worked for A would be expected (because of the mean) to have more
weight for the distribution of goods from A only because members of A
thought working harder than ϵA would not be worth the effort. To avoid
competition between the groups, any effort

∑
c∈A

êhc of h spent on A

would have to be accounted for A as min
{
ϵA,

∑
c∈A

êhc
}
. So, h did not

engage in the estimation 11f̂ of the total effort in A but h may join in for
at most the mean effort of A. Also, h from B \ A may work for a client
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from A because hard labour is better accounted there or because there is
work at all, perhaps badly accounted for the present period.

Question 19 Is this procedure fair and non-manipulable? Do superior
alternatives exist? For example, just letting assistant h join group A while
staying in B, that is, overlap of A and B in h?

In the following, two possibilities are considered: effort is kept pri-
vate or effort is shared with the group. Depending on which possibility
is chosen, the interaction between groups as a whole is discussed. The
possibilities hold for the model of group effort bounds and the model of
effort grants.

Private Effort Index Suppose that h adds his or her own effort in-
dex êhc (where c in A, as always) to the accumulated effort indices
of B, defined as αh

A :=
∑

d∈A
êhd. For example, h drives a taxi for c

and adds the effort index to the collection of B to be spent in A.
Later-on, h gets oil from A based on the effort from αh

A.

Private Effort Index in Group Effort Bound Model Let EA

and EB be the bounds on the total effort of the groups A and B.
In this case, c is willing to overreport the labour of h, that is,
to have êhc > ehc as a ‘favour’ (without expecting this ‘favour’
to be reciprocated) because only the total effort of B is brought
closer to the upper bound EB of B. However, if the group effort
is too close to EB , then this is not a favour, neither to h nor
to group B, because little time is left to h or others from B for
emergency assistance (a plumber, say) and h can not prevent c
from overreporting.

Private Index of Effort in Effort Grants Model In this case,
c will be reluctant to overreport the labour duration of h because
the additional effort index goes off his or her effort grant.

In order to apply for grain from A, the baker h does not need to
have an effort index αh

A to be spent in group A, that is, the baker
need not also be a taxi driver for clients c from group A. Instead,
requests for grain (that is, for bread) and efforts αi

A from customers i
of the baker are merged (Appendix A.3). The disadvantage is that
customers would need to have worked for A (to obtain grain) as well
as for B (to obtain bread).

Shared Effort Index Assume that the effort index of h is added to a
shared effort index of group B for efforts exerted for clients from A.
This would allow the group as a whole to apply for the distribution
of goods from A. The only incentive for h to work for c would be
to anticipate that h once will be needing a good from group A and
expects that the period of the good during which the effort holds
is not over. However, h may also not take the risk of seeing only
others profit from his or her contribution. As there is only collective
debt, this is another case of generalised reciprocity. The shared effort
index should only be used for intermediaries between groups, such
as the baker from B who needs grain from group A.
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Question 20 Does the shared effort index circumvent the problem
of merging claims and effort indices, as mentioned in Question 7 on
page 11?

Shared Effort Index in Group Effort Bound Model If c over-
reports effort of h, then êhc is added to the shared effort index
of B and there is no risk that the bound UB of the total group
effort index is approached.

Shared Effort Index in Effort Grants Model As before, c is re-
luctant to overreport the effort of h and no bound is needed on
the shared effort index to suppress overreporting.

Question 21 Should h be ‘paid’ from a shared effort grant of
group A, similar to the shared effort index? How should such a
shared effort grant be filled?

In both cases, the effect of overreporting by c is that B can obtain
more goods from A but c may ignore (or not be aware of) this
disadvantage for c.

Question 22 Should a bound on the shared effort index be imposed
and if so, how should it be determined and what happens if the bound
is surpassed?

The shared effort index can not be exhausted so it differs from a
fund, as described in Section 3.3.

The choice between private and a shared effort index may become not
applicable after the following considerations.

4.3 Effort Index Transferral

A problem above was that the baker from B needs grain from group A (on
behalf of many members of B) but may not have exerted effort for A, so
other members of B should have worked for members of A. An additional
problem is the lack of a coincidence of wants, illustrated as follows. The
taxi driver h from B who drove client c from A does not need goods
from A so can not ‘spend’ the effort index in group A. The same holds
for production instead of services, for example a potter from B made pots
for A but can not use the effort index to obtain something else from A.

One solution would seem to abolish groups and let arbitrary persons
participate in the goods rationing along a fixed path. However, that
would entitle anyone (member of some community or not) who worked
somewhere to obtain goods, in other words, members would exert effort
only to see the goods go; vice versa, they would produce for no community
in particular.

A compromise may be some generalised reciprocity (Appendix C) be-
tween groups and their members. The reciprocation should not be a
long-term right because such rights may never be executed or these rights
start to ‘lead a life of their own’ as debts having unwanted side-effects.
The reciprocation of a good which is allocated (from the store in group A)
to a non-member (someone from B) should not be another good (barter)
because goods are incomparable and there may not be a coincidence of
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wants. The only remuneration for this cross-group donation would be
effort that has been exerted for group A, but not necessarily by the recip-
ient of the good, so possibly someone from a group other than B (and A).
That is, it does not matter who worked for group A as long as the work
has been done, so the weight in the fixed-path distribution for a particu-
lar person could be the effort index of anyone who worked for group A.
Labour instead of goods (but also labour that produces goods) can sim-
ply be reciprocated by the registration of the effort. Contrary to an effort
index that can be used as a weight only in the group for which the effort
was exerted (the favoured group or beneficiary), the effort index must
be turned into some general-purpose index, independent of the benefi-
ciary. In conclusion, the effort index would be made independent of the
beneficiary and the benefactor. The following is an exploration of some
candidate arrangement for such generalised reciprocity.

4.3.1 Trading Directed Effort Tokens

As it does not matter who worked for the group to obtain a good, as long
as the work has been done, the application to goods distribution might
be arranged using ‘promissory notes’ of the effort index, that is, directed
effort tokens.4

Example 3 The taxi driver h from B earned 1 hour driving c from
group A and the maximum driving (and waiting) time is 12 hours per day,
so effort index 1

12
for A. The taxi driver does not need a good from A.

Next, a plumber exerts effort 2
36

for the taxi driver and is not paid by an
effort index 2

36
for B but by a promissary note of 2

3
of the effort index 1

12

of h for work done for A. The taxi driver is left with the remaining 1
36
.

The 2
36

does not go off any effort grant, so the taxi driver uses the effort 2
3

as if it were a weight in an imaginary distribution of labour instead of
goods. The plumber may need something from A and if not, accept the
directed token because he or she expects to find someone who does need a
good from A. Etcetera.

Notably, an effort token has a value equal to exerted effort and would
only be usuable as a weight for fixed-path distribution. However, now
it would also be used for registering effort, similar to the previously dis-
cussed resources, that is, the total estimated group effort and someone’s
effort grant. As these resources are estimated (perhaps dishonestly) they
compromise the meaning or value of the effort token, which represents
true (or at least registered) effort. Moreover, substracting the 2

36
from

the taxi driver’s 3
36

effort is treating an effort index as a commodity, an
independent entity, which is traded. Such trade runs counter to the fact
that an effort index has a long-term meaning: for daily distribution in the
evening, today’s effort no longer holds tomorrow, but for yearly distrisri-
bution, it is still valid. Also, it may be used for multiple distributions at
the same time (which is of some concern.)

Eventually, the directed token is used by someone who gets various
types of goods from A (after which it perhaps should not be possible to

4The word ‘effort note’ might be conceived as the effort registration.

25



pass it on further.) This points to another disadvantage: some person
can accumulate effort indices for a group (though theoretically not to
more than 1) from various people who worked for that group. The person
would then have a large, and perhaps unfair, weight in the fixed-path
distribution.

4.3.2 Undirected Effort Tokens

Despite these advantages, explore a variation. Yet another disadvantage
is that a directed effort token may outdate, at least with respect to short-
term usage: if one cannot use a directed effort token as a weight in the
fixed-path distribution of a particular group, one has to wait for someone
who can, or who knows someone else who can, and so on. To speed up,
consider removing the indication of the group for which the effort was
exerted and call the resulting token an effort token. It is simply worth
an index of effort exerted for whoever at a certain time (so holding for
particular periods) and which can be spent anywhere.

However, such effort tokens would render the system with effort bounds
or effort grants partially obsolete, because some effort need not be esti-
mated but can be exerted for whomever turns up with an effort token.
To amend this, the effort tokens may be used for unexpected labour only,
but that would not facilitate interaction between groups.

4.3.3 Directed Effort Token Pool

To stay closer to the original meaning and processing of the effort index,
consider that the taxi driver h transfers his or her effort index êhc (where
client c is from group A) to an effort token pool, that is, of directed tokens.
Anyone (including h) interested in obtaining goods from A could use that
token.

Automated trading would be as follows. The transferral of any êhc to
the pool create an open slot in group A of the same size: it represents
effort exerted for group A which is not necessarily used by h. Suppose i
from Y exerted effort êid (for a particular period) for some client d from
group X other than A.5 However, i wishes goods from A. (So i is in the
same position as h who wants no goods from A but from some X.) Let
P be the whole population. Let

ϵAi = max
(η,γ)∈P×A

min{êid, êηγ}

be the effort index to be used by i in A. In words: ϵAi is the largest effort
someone exerted for A but that does not exceed the effort êid. (This
query can be accelerated by first querying γ and then η.) Let πZ

j be
the pool of effort by any assistant j for some group Z. Let (h, c) be the
argument (η, γ) that defines ϵAi . So ϵ

A
i = êhc. The effort indices of h and i

are exchanged as follows:

πX
i = êid + · · · πA

h = êhc + · · ·
π̃X
i = πX

i − êhc π̃A
h = πA

h − êhc
π̃A
i = πA

i + êhc π̃X
h = πX

h + êhc

5Of course, ‘id’ is not the identity but ‘i, d’.
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The π̃ is the new pool. So, group A reckons with the same amount of work
that has been done for it but it does not matter by whom (generalised
reciprocity). It would seem that the slot should now be closed, at least
to be able to track changes. A disadvantage is that the exchange causes
the pools πZ

j to contain fragmented effort indices (‘left overs’) of which
outdate soon for short periods though they remain valid for longer periods.

The benefit for h to transfer the effort êhc to the pool is that the baker
from B may utilise this effort when merging requests for grain from A
(and h from B is a customer of the baker.) A potential drawback is that
h may regret transferring the effort to the pool and after all does want a
good from group A, but someone else may have occupied the slot. Users
may therefore be inclined to keep effort which turns out to be of no use.
In conclusion, the effort for other groups, such as êhc, is automatically
transferred to the pool in order to facilitate interaction between groups.
The major challenge would be to run all queries against a table which is
continuously being updated.

4.3.4 Effort Purse

In the above, earned effort was equated to effort to be registered. To
distinguish between the two concepts again, let earned effort êhc be added
to the effort grant, which now should be called effort purse (for lack of a
better term) and replace the above pool. So, h can no longer use êhc to
obtain goods from A or anywhere else, only to register labour. This lead
back to Question 15 on page 18.

5 Conclusion and Further Research

There is little use in elaborating details if the basis (for example, fixed-
point rationing) is the wrong point of departure. So, the questions in this
document should be answered first in order to obtain a coherent multi-
group model that does not offer major ‘loop holes’. If such is possible,
then the next step would be to finish an application for a single group
that allows to simulate this economy as a game before users put it to
practice. Feedback from users would help to decide whether expansion to
a multi-group model is useful.

In conclusion, research and development of this economy can only be
a joint effort, ideally in a (perhaps multidisciplinary) project setting.

A Rationing along a Fixed Path

Let N = {1, 2, . . . , n} be the collection of agents. An N -path for agent i
is a function gi(λ) of some parameter λ. (All values are positive real-
valued numbers unless stated otherwise.) Define 1v :=

∑
i∈N

vi for any n-

vector v. For a subset S of N let v|S :=
{
(i, vi) | i ∈ S

}
be the restriction

of the function v to S. Let E be the endowment to be distributed and let
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agent i have claim ci. Consider 1c ≥ E. Let λ be the (unique) solution of

n∑
i=1

min
{
gi(λ), ci

}
= E

and let the award be xi := min
{
gi(λ), ci

}
. If there is a surplus, 1c ≤ E,

the min becomes max to ensure strategy-proofness of the scarce-goods
case. Call this procedure distribution along a fixed path.

As a start, take gi(λ) = wiλ for suitable weights wi. This yields the
method of weighted gains [31, pp. 648, 658]. For the case of surplus,
the gains are interpreted as negative (not as losses.) The weights are
exogeneous variables, as are the N -paths.6 If 1g(λ) = λ then gi(λ) and
the problem are called scaled. The not necessarily scaled is called non-
scaled. Scaling allows to easily show that also discrete (entire) quantities
of commodities can be distributed along a fixed path. (The discrete case
illustrates that the distribution may not be anonymous or envy-free.) The
scaled fixed-path distribution has been called fixed-path rationing but the
term ‘rationing’ is not applicable for a surplus, so this name should become
obsolete7 whereas the distribution need not be scaled by definition when
it can be scaled separately, as the following shows.

A.1 Scaling

Generally, there is no bijection between solutions of the scaled and non-
scaled problem, as the following shows.

Let g′i(λ
′) be a non-scaledN -path for any λ′. Define ψ′(λ′) := 1g′(λ′)/λ′.

Scale g′i as gi(λ) = g′i(λ)/ψ
′(λ) for any λ. Conversely, given some function

G(λ′) of λ′ in the role of 1g′(λ′), let g′i(λ
′) = gi(λ

′)G(λ′)/λ′ be the not
necessarily scaled N -path. Let λ′ satisfy the non-scaled equation

n∑
i=1

min
{
g′i(λ

′), c′i
}
= E′

for claims c′ and endowment E′ and let xi = min
{
g′i(λ

′), c′i
}

be the cor-
responding award.

Proposition 1 Suppose ψ′(λ′) =W ′ where W ′ is a number independent
of λ′. Then E = E′/W ′ and c = c′/W ′ turns the non-scaled equation into
a scaled equation, and vice versa, while x = x′. If g′i(λ

′) = w′
iλ

′ (weighted
gains) then gi(λ

′) = w′
iλ

′/W ′ and W ′ = 1w′. First, the weights w′
i can

be scaled to wi = w′
i/1w

′ with λ = λ′, but there is also a second scaling:
again (necessarily) wi = w′

i/1w
′ but E = E′ and c = c′ with λ = λ′1w′.

6If the weights are individual endowments, 1w = E, then the mechanism is the proportional
uniform rule [41]; in brief, participants who own an endowment greater than their peak, the
suppliers, have a surplus, which is distributed over demanders in proportion to their individual
endowment; and repeat this process.

7Moulin [30] introduced fixed-path rationing and proved that it is the only mechanism
satisfying efficiency, resource-monotonicity, and strategy-proofness, with a ‘straightforward’
proof given by Ehlers [14].
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Proof. Substituting g′i(λ) = ψ′(λ)gi(λ) in the non-scaled equation yields

n∑
i=1

ψ′(λ′)min

{
gi(λ

′),
c′i

ψ′(λ′)

}
= E′

which shows how it can become an equation for fixed-path distribution:

n∑
i=1

min

{
gi(λ

′),
c′i
W ′

}
=

E′

W ′

For weighted gains, this equation gives the first scaling, while

n∑
i=1

min
{
wiλ

′W ′, c′i
}
= E′

yields the second scaling.

This last equation of course is trivial.

Example 4 The uniform rule has w′
i = 1 for all i so W ′ = n (so non-

scaled weighted gains) and wi = 1/n. Further, g′i(λ
′) = λ′w′

i = λ′ is
scaled as gi(λ

′) = λ′/n. Let n = 3 and c′ = (1, 2, 3). For E′ = 5 one finds
x′ = (1, 2, 2) for λ′ = 2. Scaling: w = ( 1

3
, 1
3
, 1
3
). Scaling 2: c = c′ and

E = E′ so λ = 6 yields x = x′. Scaling 1: c = ( 1
3
, 2
3
, 1) and E = 5

3
so

λ = λ′ yields x = x′.

Example 5 (Proportional Uniform Rule) Consider non-scaled weigh-
ted gains, that is, let g(λ′) = w′

iλ
′ and 1g(λ′) = E′λ′ so 1w′ = E′. The

w′
i are individual endowments (possessions) and the c′i are claims, where

c′i > w′
i for demanders and c′i < w′

i for suppliers. This weighted gains is
called the proportional uniform rule [41]. Let w := w′/E′. First scaling:
E = 1 and c = c′/E′. Second scaling: E = E′ and c = c′.

A.2 Minology

The following inequalities for minima are needed in the following section
about merging and splitting, or are useful for improvements. As is easily
seen,

max{x, y} ≤ z ⇔ (x ≤ z∧y ≤ z) ⇒ (x ≤ z∨y ≤ z) ⇔ min{x, y} ≤ z (3)

and

min{x, y} ≥ z ⇔ (x ≥ z∧y ≥ z) ⇒ (x ≥ z∨y ≥ z) ⇔ max{x, y} ≥ z (4)

for any x, y, and z. Boundary cases are more convoluted, for example

min{x, y} = z ⇔ (z = x ≤ y ∨ z = y < x)
⇔ (z = x < y ∨ z = y < x ∨ x = y = z)

(5)

follows from either equation. Potentially of interest:

x+ y = max{x, y}+min{x, y}
|x− y| = max{x, y} −min{x, y}
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The triangular inequality |x + y| ≤ |x| + |y| only gives trivial results.
While dealing with positive x and y only, the reverse triangular inequality
|x− y| ≥

∣∣|x| − |y|
∣∣ is not helpful either.

The following is needed to bundle pairs of claims and weights in fixed-
path distribution as a minimum of joint claims and weights.

For merging claims in the fixed-path distribution, xi = λwi and yi =
ci. A comparison with min is needed. For the final result, which in-
volves µ, deciding whether xi ≤ yi would depend on λ, of which the
computation is possible but to be avoided in practice. The conditions for
equality are not needed here.

Proposition 2 For i in some finite set K of cardinality k = |K| let xi
and yi be real-valued numbers. Then

min{kx†, ky†} ≤
∑
i

min{xi, yi} ≤ min{1x,1y}

for x† := min{xi | i ∈ K}, which defines y† similarly. Left-hand equality
iff x = y and xi = xj for all i and j. Right-hand equality iff x ≤ y or
x > y (coordinate-wise inequalities).

Proof. Let i range over K in the summations and definitions of sets.
Let σ :=

∑
i
min{xi, yi}. Basis: σ =

∑
i:xi≤yi

xi +
∑

i:xi>yi
yi.

Right-hand inequality: Basis yields σ ≤
∑

i
yi = 1y and σ ≤

∑
i
xi =

1x. Invoke Equation 4 to prove the inequality. Equality iff σ contains one
sum: σ = 1x ≤ 1y or σ = 1y < 1x. Resort to Equation 5.

Left-hand inequality: Introduce x∗ := min{xi | xi ≤ yi} and y• :=
min{yi | xi > yi}. The basis yields8 σ ≥ τ for τ :=

∑
i:xi≤yi

x∗ +∑
i:xi>yi

y•, which are sums of constants. (Equality σ = τ iff x = y, in

which case σ = 1x.) Distinguish x∗ ≤ y• and x∗ ≥ y•. So τ ≥ kx∗

or τ ≥ ky•. Equation 3: τ ≥ min{kx∗, ky•}. Finally, x∗ ≥ x† and
y• ≥ y†. So τ ≥ min{kx†, ky†}, which proves the inequality. Equal-
ity iff τ = kx† ≤ ky† or τ = ky† < kx† according to Equation 5. As
x = y is required already for σ = τ , a necessary and sufficient condition
is x = y and 1x = σ = kx†, and the latter tells that all xi are the same.

A.3 Claims Merging and Splitting

The following supports Question 7 on page 11. The point of departure
is weighted gains but some other N -path of fixed-path distribution may
be necessary, some ‘weighted’ proportional uniform rule, or a need-based
mechanism instead of one based on single-peaked preferences.

The purpose of merging claims of a group Q of people is to reduce
administration. For example, nobody applying for a bread should need
to apply for grain, water and so on, which would have to be distributed
separately. Can participants Q merge claims and effort indices (weights)

8The right-hand side is ≥
(∑

i:xi≤yi
1

)
mini:xi≤yi xi +

(∑
i:xi>yi

1

)
mini:xi>yi yi but

this can not sensibly be simplified.
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such that claims and weights of others need not be adapted and that
the joint award probably approximately equals the total of the unmerged
awards?

The uniform rule (constrained equal awards for the case of scarcity)
is not manipulable by merging [28, Th. 1ii] or merging-proof [39, p. 54].
The proportional rule is the only such rule obeying certain additional
requirements [35, p. 345].

Let the joint claim be Γ and V the joint weight. Define M = N \ Q
as the rest. The original equation∑

i∈Q

min{wiλ, ci}+
∑
i∈M

min{wiλ, ci} = E

when solved for λ yields awards xi = min{wiλ, ci}. So 1x|Q + 1x|M = E.
The merged equation is

min{V µ,Γ}+
∑
i∈M

min{wiµ, ci} = E

where c|M and E are unaltered for simplicity. When solved for µ the
awards are Y = min{V µ,Γ} and yi = min{wiµ, ci} for i in M . So Y +
1y|M = E.

Is there a combination of weights V and combination of claims Γ such
that the award Y after after merging probably is approximately equal to
the total return 1x|Q without merging? In other words, purpose is to have
x|M ≈ y|M . (The distribution of Y amongst Q is of no concern yet but if
it turns out to deviate from 1c|Q then a fixed-path rationing will be most
natural, though that requires an additional computation.)

Weighted gains meets consistency, upper and lower composition and
scale invariance [31, p. 658] but this is not directly related.

Let c|†Q := min{ci | i ∈ Q} and w|†Q := min{wi | i ∈ Q}, as in
Proposition 2.

Example 6 (Classic uniform rule) Claims c = (1, 2, 3) and endow-
ment E = 4. So

min{λ, 1}+min{λ, 2}+min{λ, 3} = 4

yields λ = 3/2 whence x = (1, 3
2
, 3
2
). Coalition Q = {1, 3}. Merge by

adding the claims: Γ = 1c|Q = c1 + c3 = 4. The weights are w = (1, 1, 1)
and to retain the form of the uniform rule, let V = 1. Merging gives

min{µ, 4}+min{µ, 2} = 4

so µ = 2. So ‘merging-proof’: Y = 2 < 2 1
2
= x1+x2 and y2 = 2 > x2 = 3

2
.

For the following propositions, such a mixture of claims addition and
weights minimum is not considered.

Proposition 3 (Bundling by Summation) Suppose 1c > E. If Γ =
1c|Q and V = 1w|Q then the joint award Y = min{µ1w|Q, 1c|Q} satisfies
Y ≥ 1x|Q so bundling by summation of claims and weights is not strategy-
proof or yields the same outcome.
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Proof. Let f(ν) := min{ν1w|Q, 1c|Q} +
∑

i∈M
min{νwi, ci} for any ν.

Let Z := min{λ1w|Q, 1c|Q}. As Z ≥
∑

i∈Q
min{λwi, ci} = 1x|Q (second

inequality in Proposition 2) one finds

Z + 1x|M ≥ 1x|Q + 1x|M = E = Y + 1y|M

so f(λ) ≥ f(µ). On the range of µ, which includes 0, the function f
is strictly increasing, for otherwise 1c = E. So λ ≥ µ. Therefore,
min{λwi, ci} ≥ min{µwi, ci} for all i in M . In other words, x|M ≥ y|M ,
that is, the participants not in the coalition may be worse off. So 1x|M ≥
1y|M and Y = E−1y|M ≥ E−1x|M = 1x|Q: the coalition may be better
off.

An example is given after the next proposition.

Proposition 4 (Bundling by Minimisation) Suppose 1c > E. Let
q := |Q|. If Γ = qc|†Q and V = qw|†Q then the joint award Y = min{µqw|†Q, qc|

†
Q}

satisfies Y ≤ 1x|Q on the condition that qc|†Q + 1c|M > E, so after
bundling, E still does not suffice for all. In that case, bundling by sum-
mation of minimum claims and weights is strategy-proof.

Proof. Let g(ν) := min{νqw|†Q, qc|
†
Q} +

∑
i∈M

min{νwi, ci} for any ν.

Let Ω := min{λqw|†Q, qc|
†
Q}. As Ω ≤

∑
i∈Q

min{λwi, ci} = 1x|Q (first

inequality in Proposition 2) we find

Ω + 1x|M ≤ 1x|Q + 1x|M = E = Y + 1y|M

so g(λ) ≤ g(µ). Some µ is to be found in the range {ν | g(ν) ≤ E} so
that g(µ) = E. In that range, g is strictly increasing (depends on ν)
because otherwise g(ν) = qc|†Q + 1c|M > E. For λ in the range, λ ≤ µ
as g is strictly increasing. Now let λ be outside the range, so g(λ) > E.
Would λ > µ then g(λ) ≥ g(µ) because g is increasing or constant. As
g(λ) ≤ g(µ) the only remaining case is g(µ) = g(λ) but then g(µ) > E, a
contradiction. So again, λ ≤ µ. As before, x|M ≤ y|M , so 1x|M ≤ 1y|M ,
so Y = E − 1y|M ≤ E − 1x|M = 1x|Q.

The case qc|†Q + 1c|M < E yields an equation µ in terms of max and
requires further research.

Example 7 (scaled Uniform Rule) Claims c = (1, 2, 3) and endow-
ment E = 4. Scaling 2 gives a scaled uniform rule: w = ( 1

3
, 1
3
, 1
3
). So

λ = 9/2 and x = (1, 3
2
, 3
2
) as for the classic uniform rule.

Bundling by summation, Γ = 4 and V = 2
3
, gives the merged equation

min
{
2

3
µ, 4

}
+min

{
1

3
µ, 2

}
= 4

So µ = 4 whence Y = 2 2
3
> x1 + x3 = 2 1

2
and y2 = 8

6
< x2 = 9

6
. So not

‘merging-proof’.
Bundling by minimisation: Γ = 2min{1, 3} = 2 and V = 2min{ 1

3
, 1
3
} =

2
3
so still scaled. The merged equation

min
{
2

3
µ, 2

}
+min

{
1

3
µ, 2

}
= 4
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can still use min and yields µ ≥ 6 so Y = 2 < 2 1
2
and y2 = 2 > 1 3

2
so

‘merging-proof’.

Now for different weights.

Example 8 (Weighted gains) Claims c = (1, 2, 3), endowment E = 5,
and weights w = ( 1

2
, 1
3
, 1
6
). So

min{1
2
λ, 1}+min{1

3
λ, 2}+min{1

6
λ, 3} = 5

and the solution λ = 5 yields x = (1, 2, 2).
Coalition Q = {1, 3} and bundling by summation yields Γ = c1+c3 = 4

and V = w1 + w3 = 2
3
. So

min{2
3
µ, 4}+min{1

3
µ, 2} = 5

whence µ = 5 and Y = 10
3
> 3 = x1 + x3 and y2 = 5

3
< 2 = x2. So not

‘merging-proof’.
Bundling by minimisation: Γ = 2min{1, 3} = 2 and V = 2min{ 1

2
, 1
6
} =

1
3
so not scaled as 1w = 2

3
< 1. Proposition 4 does not apply because the

merged equation

min{1
3
µ, 2}+min{1

3
µ, 2} = 5

does not have 2+2 = Γ+c2 > E = 5. If rephrased with max, then µ = 15
2

and Y = y2 = 2 1
2
so ‘merging-proof’.

The remainder of this section is an investigation into the extent to
which there can be an expression for the joint claim Γ and the joint
weight V of the coalition Q such that Y = 1x|Q, which is to say, such
that min{µV,Γ} =

∑
i∈Q

min{λwi, ci}. This is generally impossible be-
cause the only rule not allowing advantageous merging or splitting is the
proportional rule [38, pp. 286-287]. So, the following is a first step to-
wards finding a joint expression that allows to approximate the desired
equalities.

If strict equalities were possible, it would be unfair if the awards of M
(the rest) would change, so that some would be better off and others not.
Therefore, investigate the possibility of the existence of Γ and V such that
y|M = x|M . Assume 1c > E and Γ + 1c|M > E. This would imply

Y = min{µV,Γ} = E − 1y|M = E − 1x|M =
∑
i∈Q

min{λwi, ci} = 1x|Q

when no scaling. For any κ define α(κ) :=
∑

i∈M
min{κwi, ci}. So

α(λ) +
∑
i∈Q

min{λwi, ci} = E

is to be merged as α(µ) + min{µV,Γ} = E. Generally, α(λ) = 1x|M =
1y|M = α(µ).
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Case λw|M ≥ c|M . So x|M = c|M whence y|M = c|M ≤ µw|M . Let j
in Q be such that λwj < cj . (Such j exists.) So:

Y = min{µV,Γ} =
∑
i∈Q

min{λwi, ci} < 1c|Q

Notably,
∑

i∈Q
min{λwi, ci} < min{λ1w|Q, c|Q} because λw|Q ̸≥ c|Q and

λw|Q ̸≤ c|Q as in Proposition. Subcase µV < Γ gives Y = µV and from

Y = E−1y|M = E−1c|M follows µV = E − 1c|M and µ(V +1w|M ) ≥ E

because c|M ≤ µw|M . Subcase µV ≥ Γ yields Γ < 1c|Q , which is not

very informative because it already follows from Y = E − 1y|M = E −
1c|M < 1c|Q.

Case λw|M ̸≥ c|M . Let i in M obey λwi < ci. So α(λ) < 1c|M .
Therefore, min{µV,Γ} = Y = E − α(µ) = E − α(λ) > E − 1c|M So

µV > E − 1c|M and Γ > E − 1c|M . Also min{µwi, ci} = yi = xi =

λwi, so µwi ≤ ci, from which λ = µ. So

min{λV,Γ} =
∑
i∈Q

min{λwi, ci} ≤ min{λ1w|Q, 1c|Q}

where the last inequality follows from Proposition. So V ≤ 1w|Q in this
case.

The boxes for Γ are compatible as 1c > E but those for µV are not, so a
general bundling that does not affect unbundled claims seems impossible.
This analysis only suggests that a bundling that least affects other rewards
obeys max{E − 1c|M , 0} < Γ < 1c|Q and 0 < V ≤ 1w|Q where the
claims c|M are known to a computer program but not to the coalition Q.

B Priorities

Participants can first be sorted on priorities and for each priority, receive
goods according to the fixed-path rationing; this does not compromise
strategy-proofness [30].

If the combination of consistency and resource-monotonicity (a condi-
tion for fixed-path rationing) is replaced with replacement monotonicity,
then the only option is sequential allotment, where the N -path is not
parametrized but changes more freely in the course of the computation.
This allows to assign priorities based on previous stages of the compu-
tation [5]. Sequential allocation also allows discrete allotment, see [3,
App. 2].

C Generalised Reciprocity

Generalised reciprocity or generalised exchange is the remuneration of a
benefactor not necessarily by the beneficiary [17, p. 421 note 21]. The
term ‘mutual aid’ is also used but the word ‘mutual’ may be conceived as
strict reciprocity, that is, where the beneficiary remunerates.
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Reciprocity: ‘If I need a good or service from a person then I should
reciprocate to that person the donation of the good or the rendering of
the service: either I have a debt to redeem or I pay in advance.’

Generalised reciprocity: ‘If I need a good or service, I can be quite cer-
tain that someone from my group will provide it but I should reciprocate
to the group: either I have a debt to redeem or I pay in advance.’ One
example is money: ‘I work for someone (and get money) and the good
or service is obtained not necessarily from that person (by paying the
money).’ Another example is fixed-path distribution: ‘I work for someone
(and get an effort index) and the good is obtained not necessarily from
that person (by letting the effort weigh in during fixed-path distribution).
This covers the reversed situation: if I need labour, I am in the same
situation as that other person and will register the effort.’

Example 9 In a number of European countries, Eurotransplant deter-
mines who receives an organ for transplantation for most kinds of donors.
For livers, reciprocity holds: If a liver crosses a border then the recipi-
ent country returns a liver to the donor country at the earliest occasion.
(These ‘liver obligations’ are geographically connected in the obvious way
but this does not prevent high transport cost.) For kidneys, reciprocity
is generalised: candidate kidney recipients are ranked higher for a kid-
ney from abroad in proportion to the net kidney export of their country,
irrespective of the country that received the kidney [15].

If the Latin ‘do ut des’ (I give so that you give) is conceived as a
succinct paraphrasing of strict reciprocity, then generalised reciprocity
would become ‘do ut det’: I give (to you) so that he or she gives.

D Inspection-Based Mechanisms

Agent D (the declarer) owns an object which has a value θ in R≥0 that
initially is known only to D. (So, D has no preference for a particular θ.)
Agent C (the claimant or perhaps challenger) may ask D to reveal θ,
that is, force an inspection of θ, but also ask D to just report θ. The
reported θ is θ̂. Agent C may accept the declaration or buy the object. Let
the transfer function t map θ to some real-valued number, the payment.
Suppose t is a strictly increasing function and that t(θ) ≤ θ for all θ. The
following utilities are paid off:

UD(θ) =

{
θ − t(θ̂) if accepted
θ̂ − θ if bought

UC(θ) =

{
t(θ̂) if accepted
θ − θ̂ if bought

An example is the Liturgeia, where a citizen C of ancient Athens suspects a
cocitizen D to be rich enough to contribute to the fleet. If C suspects that
θ̂ < θ then C may decide to buy and get the true value θ [21]. Otherwise, D
will have to contribute t(θ̂) which for simplicity of the model is a payment
to C. Another example is levying a tax, such as t(x) = x/100, in various
settings [18].

Suppose that D needs a positive outcome. The outcome would be
negative if θ̂ < θ and the challenger decides to buy. Therefore θ̂ ≥ θ but
then t(θ̂) should be minimized. So θ̂ = θ.
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Te mechanism hinges on the possibility that the physical reality is
disclosed [22]. When D does not need a positive outcome, the mecha-
nism is not truth-telling [18]. By the Bayesian revelation principle [25,
p.291], a mechanism not based on preferences exists that does not require
inspections but discourages to misreport one’s type without inspection.
The question is how that mechanism looks like. The following might be
a search in the wrong direction.

E Need-Based Cake Division

Following are two unsatisfactory procedures to elicit a need instead of a
want of two agents for a piece of a homogeneous cake. The cake may
be divisible at arbitrary or predetermined points (be ‘continuous’ or ‘dis-
crete’) and the selection of the pieces is random. In the first procedure,
one agent cuts the cake but not much is learned. In the second procedure,
both agents cut at the same time; in the hypothetical case that the agents
avoid mutual destruction, this reveals the needs.

E.1 Cake Cutting with Random Selection

First, suppose agent 1 needs at least a piece θ of a cake of size E because
otherwise, he or she will die. Futher, agent 1 wants as large a piece
as possible. If agent 2 cuts based on inspection, then agent will always
choose θ̂ = E/2, so this does not tell anything about θ. Now suppose
both pieces of cake are concealed in identical boxes. Agent 2 choses a box
(without weighing it) with equal probability and the piece x therein is
given to agent 1. The idea is that maximizing the utility is bounded and
this bound depends on the need as the selection may turn out to be the
other piece of cake. If θ > E/2 then agent 1 will put the whole cake in
a box and hope for the best. If θ ≤ E/2 then suppose agent 1 splits the
cake at θ̂ where θ ≤ θ̂ ≤ E − θ as any θ̂ outside that range poses a risk
for getting less than needed. The expected size is 1

2
θ̂ + 1

2
(E − θ̂) = E/2,

which is independent of θ̂. So, θ̂ is uniformly distributed in this interval
and all one can conclude is that θ ≤ min{θ̂, E − θ̂}.

E.2 Sealed Cake Bids with Random Selection

Second, let agent 2 cut at the same time as agent 1, or rather, both make
a sealed bid θ̂i where θ̂i ≥ θi > 0 for i = 1 and i = 2. There is a random
selection of the agent who gets the piece bid for; if xi < θi then agent i
dies, in which case xi is given to agent 3− i (the other). So, the award is

x = (x1, x2) :=


{

(θ̂1, E − θ̂1) if E − θ̂1 ≥ θ2
(E, 0) otherwise

probability p{
(E − θ̂2, θ̂2) if E − θ̂2 ≥ θ1
(0, E) otherwise

probability 1− p

where 0 < p < 1. If θ̂1 + θ̂2 ≤ E then the remainder E − θ̂1 − θ̂2 is given
randomly to an agent but it could also be distributed in some convenient
way, for example, split equally, at least for a ‘continuous’ cake.

36



Example 10 Agent 2 can choose a very large piece and have a chance to
kill agent 1. Suppose θ1 + θ̂2 > E. So θ̂1 + θ̂2 > E. If it turns out that
x1 = E − θ̂2 then x1 < θ1 so agent 1 dies. Suppose also θ̂1 + θ2 ≤ E.
If x2 = E − θ̂1 happens, then x2 ≥ θ2 so agent 2 survives. For example,
E = 100, θ = (1, 1) and θ̂ = (2, 100) yields x = (2, 98) or x = (0, 100). If
p = 1/2 then agent 1 still expects to get 1.

A dominant strategy equilibrium is as set of agent’s responses each of
which is best whatever the other agent does [25, pp. 5, 283].

Proposition 5 (Dominant Strategy Equilibrium) The moves θ̂ =
(E,E) constitute a dominant strategy equilibrium.

Proof. Agent 2 reasons as follows. If θ̂1 ≤ E−θ2 then my bid should have
been θ̂2 = E because the outcome x = (θ̂1, E− θ̂1) saves me (E− θ̂1 ≥ θ2)
and x = (0, E) is optimal. If θ̂1 > E − θ2 (for example, agent 1 makes a
grossly exagerated bid θ̂1 = E) then my bid should have been θ̂2 = E too:
the awards are x = (E, 0) or x = (0, E) so if I survive, I get the whole
cake. Agent 1 reasons similarly, or knows that agent 2 reasons this way,
so will also choose θ̂1 = E.

For i = 1 and i = 2 let θ̂i(ω1) be a random variable depending
on ωi from some sample space Ωi of a probability space Pi not depending
on θ̂3−i, the opponent of i. Let Xi(ωi) := E − θ̂3−i(ωi). The purpose of
the game (truth telling) is expressed by the following proposition, which
however is void because it demands that Pi(Xi < y) be strictly increas-
ing in y. However, consider i = 1. In the dominant strategy equilibrium
θ̂ = (E,E) one has P1(X1 < θ̂1) = P1(E− θ̂2 < θ̂1) = P1(0 < θ̂1) = 1 and
thus, constant in θ̂1.

Proposition 6 (Strategy-proofness) If Pi(Xi < y) is strictly increas-
ing in y then the procedure elicits the true needs.

Proof. Concentrate on agent 1 as agent 2 is treated similarly. So
X1 = E − θ̂2. First, suppose θ̂1 + θ̂2 ≤ E. Then x1 = θ̂1 ≥ θ1 and
x2 = E − θ̂1 ≥ θ̂2 ≥ θ2 so both agents get their needs. Next, consider
the only risky circumstance, θ̂1 + θ̂2 > E, which could also turn out to
be the case. It may happen that E − θ̂2 < θ1, which is fatal for agent 1.
The only way agent 1 can influence the event X1 < θ1 is by diminishing
the probability P2(X1 < θ̂1), that is, of θ̂1 + θ̂2 > E happening. This
probability is minimised by choosing the least θ̂1. So θ̂1 = θ1.

The question is how θ̂ = (E,E) can be avoided or whether a variation
of this game allows truth-telling. Perhaps the following section provides
a clue.

F Planning Game

The estimation of effort, reported as f̂ , and the actual effort, registered
as ê, basically are subject to the following game, where µ in the role of f̂
and c in the role of ê.
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There are participants 1 and 2. An entity (for instance, total effort)
of maximum size E is to be determined. Each participant i reports µi,
the size of his or her part of the entity. The total size E := µ1 + µ2 is
not public, so i cannot derive µj , where j := 3 − i is the other. Once
the entity is determined, the ‘real’ parts ci are reported (possibly by j or
nature). The outcomes xi are such that any surplus µj − cj > 0 is given
to i when i has a deficit (ci − µi > 0), that is:

xi :=
{
µi +min{0, µj − cj} if ci > µi

ci if ci ≤ µi

The person i having the largest xi is the winner. (In the economy of
the main text, the amount of goods is greatest if the accounted effort xi
is greatest, at least if both required equal amounts.) If i underestimated
(ci > µi) then imay see the surplus go to j and if i overestimated (ci ≤ µi)
then i only gets ci, the low value. To be determined is whether the choice
of c yields any strategy-proof mechanism, that is, where estimating µ = c
is encouraged. Also, to be investigated is whether the ‘punishment’ can
be replaced with a mechanism that suppresses collusion when making the
estimates.

To relate to bankruptcy with claims guarantees, Appendix G, let 1x :=
x1 + x2 and similarly for other variables. So:

1x < 1µ < 1c if c1 > µ1 and c2 > µ2

1x ≤ 1µ and 1x < 1c if c1 > µ1 and c2 ≤ µ2

same if c1 ≤ µ1 and c2 > µ2

1x = 1c ≤ 1µ if c1 ≤ µ1 and c2 ≤ µ2

So 1x ≤ max{1c,1µ}.
For 3 or more players, the surplus may be distributed using the func-

tions ψ and ρ in Appendix A.1 and Appendix G.6, respectively, possibly
allocating most of the surplus from j still to i.

G Bankruptcy with Claims Guarantees

In essence, a bank employs claims guarantees if upon bankruptcy, claims
below the guarantee are awarded to the claimant and for claims greater
than the guarantee, the award is also greater than the guarantee. There
are several ways to let the awards be partially proportional to the claim.

G.1 Notations and Conventions

As usual, ‘iff’ means ‘if and only if’. The identity function is id. Un-
less stated otherwise, numbers are in R≥0, that is, real-valued and non-
negative. Consider a set X and suppose A is subset of X. Let A¬ := X\A
be the complement of A with respect to X. Let Y be another set, pos-
sibly equal to X. Consider any function F from X to Y as a subset
of X × Y . The function value of some x from X is denoted F (x) or Fx

but in proofs, it may yet be abbreviated to just F if x is fixed. Let
F |A := F ∩ (A × Y ) =

{(
a, F (a)

)
| a ∈ A

}
, the restriction of F to A.

Let N := {1, . . . , n} for some natural number n. Consider a function
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f : N → R, so f is a subset of N × R. Its projection on R is the f -
vector or f -profile f [N ] = (f1, . . . , fn). Let M be a subset of N . So
f |M := {(j, fj) | j ∈ M}. For any g : M → R let 1g :=

∑
j∈M

gj where

1 := (1, 1, . . . , 1) is a row of the appropriate dimension, |M | in this case,
and g is thought of as a column, so 1g is an inner product. Therefore,
1f |M =

∑
j∈M

fj .
For n-tuples u and v let u ≤ v denote ui ≤ vi for all i in N , and

similarly u < v. So u ̸< v denotes that ui < vi not for all i, that is, there
is an i in N such that ui ≥ vi. Therefore, 1u < 1v implies that ui < vi
for some i (for, suppose the contrary).

Let ⪯ be another notation for ≤, the component-wise comparison.
Further, ≺ is defined as the asymmetric part of ⪯, that is, u ≺ v means
u ≤ v and u ̸≥ v, which is to say that u ≤ v and ui < vi for some i.
Therefore, u ̸≺ v is (u ≤ v ⇒ u ≥ v), equivalently, (u ̸≤ v or u ≥ v),
that is, u ≥ v or ui > vi for some i. The usual definition of u being a
maximal in a set V is u ̸≺ v for all v from V . This coincides with u being
Pareto-optimal, better known by its definition u ≺ v for no v in V . Also,
u ≺ v iff (1u < 1v and u ≤ v), as is easily verified.

G.2 Axioms

There are n agents9 N := {1, . . . , n}. Unless stated otherwise, i is in N .
Let there be a number E, the endowment (or estate). Let there be a
parameter π from some multi-dimensional set, including any preferences
of the agents. Let Ξπ be a subset of Rn

≥0. The allocation problem is
to determine, for all i in N , a number xi(π), the award (or allotment,
allocation, and so on), where x(π) ∈ Ξπ, such that there is sub-balance,

1x(π) ≤ E (6)

that is, to distribute E in portions xi(π) to i. So, the set of profiles x is
implicitly defined by conditions imposed on x, as expressed by Ξπ. For
example, π = E and Ξi(π) = [0, E]n, that is, 0 ≤ xi(π) ≤ E for all i in N .
If 1x(π) = E then there is balance.10 Any remainder E−1x(π) is wasted.
The parameter π and conditions Ξπ imposed on x(π) are as follows.

The maximum allocation problem or bank dissolution problem11 is the
allocation problem with joint awards boundedness where claimant jointly
wish to maximise their award:

x(π) ∈ maxΞπ (7)

The max is with respect to the joint ≤, that is, y ≥ x(π) ⇒ y ≤ x(π)
for all y. Therefore, this condition is equivalent to x(π) ̸≺ y for all y

9These agents may only be the employees of an employer in the main text and not the
whole group.

10As in [39, p.42] but also ‘efficiency’ [38, p.252].
11The reference to a bank is only to conform to the usual term ‘bankruptcy’. Various

distinctions between bankruptcy and rationing are possible: bankruptcy could deal only with
1c > E while rationing with both 1c > E and 1c ≤ E but in times of abundance, the term
‘rationing’ is not applicable; or rationing could be characterised by single-peaked preferences
where the peak may be between ci and E; or rationing could consider private (subjective)
preferences whereas bankruptcy would deal with public (objective) claims.
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in Ξπ and thus Pareto optimal, as set out at the end of Section G.1. For
example, xi is in [0, E] and each preference relation is single-peaked at E.

Proposition 7 The award x is endowment-monotonous, that is, E′ ≥ E
implies x′i ≥ xi for all i in N .

Proof. Equation 6 (1x ≤ E) lets every increase of E allow further
maximisation of x, Equation 7.

For all i let there be a number ci, called claim of i, who is now called
claimant.12 The claims problem13 or bankruptcy problem is the maximum
allocation problem where 1c > E and no solution is offered for 1c ≤ E.
The case 1c ≤ E is called bank solvency though that term does not express
that the bank redeems all its debts.14 From now on, only mention ci or
the entire c as the argument of xi.

Proposition 8 If 1c > E then 1x(c) < 1c, so-called joint awards bound-
edness. In that case, xi(ci) < ci for some i.

Proof. Supposing 1x ≥ 1c would contradict Equation 6. Were x ≥ c
then 1x ≥ 1c.

The ci is a bounding claim if xi(ci) ≤ ci. If so for everyone,

x(c) ≤ c (8)

then x obeys awards boundesness.15 So, if there is more than enough for
everyone, then still nobody’s award will be strictly greater than his or her
claim and the surplus is discarded.16

Let there be numbers µi, the claims guarantee, risk bound, or soft
bound17 (bound of claims, that is) such that xi|[0,µi] = id. If so for all,

ci ≤ µi implies xi(ci) = ci for all i in N (9)

then µ is the profile called correspondingly. Imposing Equation 9 is called
exemption if x(c) ≤ c (Equation 8) because agents having low claims
‘cannot be held responsible for the shortage’ and thus should receive their
claim in full [19, p. 317]. The term ‘risk bound’ for µi is explained by the
following, which does not depend on x(c) ≤ c, Equation 8.

12The term ‘claim’ is not common for the peaks of single-peaked preferences which are not
necessarily at the highest possible value. For the problem where 1c < E the term ‘claim’ is
maintained [38, p. 252, 291ff].

13In [39, p. 42] the definition extends to 1c = E but this case is no real problem and would
be inconvenient in the present context.

14Compare to the festive redemption of all debts [26, p. 397]. It would be even more festive
if awards were greater than the claims, as for one-sidedness.

15Conventionally, ’claims boundedness’ [39, p.42] but the claims are not bounded.
16The allocation problem is one-sided [32, p. 599] if x ≤ c for 1c ≥ E and x ≥ c for 1c ≤ E.

For example, each claimant i has a preference relation on the possible awards xi that has a
single peak at ci. Single-sidedness may be dropped [38, pp. 291ff].

17For sequential allotment, synonyms are ‘reference allocations’, ‘reference points’, ‘collec-
tion of shares’, and ‘guaranteed levels’, but they are not necessarily the greatest guarantees as
they change during the computation [7, pp.641-642]. For the rationing problem, a similar if
not identical concept is called benchmark allocation, ω-guarantee, and initial endowment [32,
pp. 588, 593].
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Proposition 9 If 1c > E then µi < ci and xi(ci) < ci for some i.

Proof. Proposition 8: Joint awards boundedness, 1x < 1c, tells that
xi < ci for some i. Equation 9: µi < ci.

The term ‘soft bound’ stresses that j other than i in Proposition 9
may have µj < cj yet xj(cj) ≥ cj .

Consider the case 1µ > E. It may happen that c = µ and 1c > E.
Then x(c) = x(µ) = µ = c so 1x(c) = 1c > E, contradicting Equation 6,
1x(c) ≤ E, and there would be no solution.18 Therefore, impose

1µ ≤ E (10)

which is called the claims guarantee condition.
The µi is called a non-diminishment bound if

ci > µi implies xi(ci) ≥ µi (11)

for all i in N . In words, claims above the claims guarantee yield an award
also above the claims guarantee. This condition should not be added to
the axioms if the award if required to be monotonous. This is obvious
from a graph of x but formalised as follows.

Proposition 10 If xi is weakly monotonous (non-decreasing as a func-
tion of ci) then µi is a non-diminishment bound, Equation 11.

Proof. Suppose ci > µi but xi(ci) < µi. Choose a claim di such that
xi(ci) < di ≤ µi, for example di = µi. From di ≤ µi follows not only
di < ci but also xi(di) = di because of exemption, Equation 9. So
xi(di) > xi(ci), contradicting monotonicity.

Continuity is only partially guaranteed, as the following proposition
and example show.

Proposition 11 If µi is a non-diminishment bound (Equation 11) then
the award xi is right-continuous in µi.

Proof. Let ϵ in (0,∞) and choose δ in (0, ϵ]. Let γ in (µi, µi + δ). The
definition of continuity requires xi(γ) in (µi−ϵ, µi+ϵ). Non-diminishment
bound: xi(γ) ≥ µi > µi−ϵ. Exemption, Equation 8: xi(γ) ≤ γ < µi+δ ≤
µi + ϵ.

The proof can also apply the ‘squeeze theorem’ by squeezing xi be-
tween the diagonal and the constant function.

Example 11 If the non-identical part of xi is a ‘squeezed Dirichlet func-
tion,’

xi|[µi,∞)(γ) =
{
γ if γ is rational (a fraction)
µi otherwise

then xi|[µ,∞) is nowhere continuous except in µi.

Such pathological functions are excluded by imposing continuity.

18This is not resolved by imposing that µ be a non-diminishing bound profile, Equation 11,
which means that c ≥ µ implies x(c) ≥ µ, so 1x(c) ≥ 1µ. For, it may turn out that c ≥ µ and
1µ > E (so, the case 1c > E). Again, in view of Equation 6, no solution would be possible.
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G.3 Definition

The displayed equations (or axioms) define the maximum allocation prob-
lem with soft bounds, which is the topic of the sequel. As set out above,
Equation 11 can be omitted if monotonicity is imposed. These axioms,
except maximality, Equation 7, determine the region Ξπ for π = (E, c, µ),
which specifies n. Judging from overviews by Thompson [38, 39] the
maximum allocation problem with soft bounds has not been considered
in the literature. Thompson remarks ‘Imposing this bound [cmax, on the
claims] restricts somewhat the scope of the rule but it permits a very
simple (piecewise linear) representation’ [38, p.259, n.11] but that is a
representation of the Talmud rule [12, p.284].

Proposition 12 The following holds irrespective of whether µ is a non-
diminishment bound profile, Equation 11.

1. identity solution: 1c ≤ E is equivalent to x = id, that is, xi(ci) = ci
for all i.

2. If 1c < E then 1x < E; if 1c ≥ E then 1x = E.

3. If 1c ≥ E then c ̸< µ.

4. If 1c ≥ E then c ̸≺ µ.

The last two statements have been explained at the end of Section G.1.

Proof. Item 1: From x = c follows E ≥ 1x = 1c because of Equa-
tion 6. Conversely, let 1c ≤ E. The following shows that x = c satisfies
all conditions on x. Equation 6: 1x = 1c ≤ E. Equation 8: 1x ≤ 1c, so
Equation 7 (maximality) guarantees uniqueness of x. Equation 9 (exemp-
tion) and Equation 11 (if imposed) are trivially true.

Item 2: Consider only 1c > E as the rest follows from Item 1. So x ̸= c.
Let i be such that xi < ci. (Equation 8: x ≤ c.) Equation 9: ci > µi.
Assume 1x < E to derive a contradiction. Let ϵ := min{ci − xi, E − 1x}
and define

yj :=
{
xi + ϵ if j = i
xj otherwise

for j in N . Then y satisfies the following conditions. Equation 6: 1y =
1x + ϵ ≤ E. Equation 8: 1y = 1x|N\{i} + xi + ϵ ≤ 1c. Equation 9 does
not apply because ci > µi. If Equation 11 is imposed, then xi ≥ µi so
it also holds for y because yi > xi. As y is in Ξπ, the region defined by
these conditions, x violates maximality, Equation 7.

Item 3: Suppose the contrary, c < µ. Then E ≤ 1c < 1µ, which
contradicts Equation 10.

Item 4: Suppose the contrary, c ≺ µ. Let j be such that cj < µj .
Then 1c = cj + 1c|N\{j} < µj + 1c|N\{j} ≤ 1µ ≤ E, a contradiction with
1c ≥ E.

The following example of the uniform gains illustrates how µi is an
initial endowment, but more such endowment profiles are defined in the
course of the computation for the uniform rule.

Example 12 Consider the uniform rule for 1c > E (the uniform gains)
as defined by xi = min{λ, ci} where λ solves 1x = E. Then µi = E/n is
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a constant claims guarantee and a non-diminishment bound. This is seen
as follows. First of all, λ ≥ E/n for otherwise, xi ≤ λ < E/n so 1x < E,
a contradiction. If ci ≤ E/n then ci ≤ λ so xi = ci and µi is a claims
guarantee. If ci > E/n then there are two cases. One case is ci ≤ λ so
xi = ci > E/n The other case is ci > λ, which implies xi = λ ≥ E/n. In
both cases, xi ≥ E/n so µi is a non-diminisment bound.

An example of µ having a meaning that does not depend on the com-
putation is an allocation problem where 1c > E, the µi are individual
endowments (in the sense of possessions) and ci are the unique peaks of a
preference; this is the case in [41, p.793] where claimants whose claims can
not be honoured in full, receive an award proportional to the individual
endowment, not (partially) proportional to the claim, as will be required
below.

It may be the case that µ is public but E is private, as in the following.

Example 13 (Dutch banks) The Dutch central bank guarantees that
customers i from most Dutch banks receive their claims up to a claims
guarantee µi = µ1 = 105 euro from their bank when it goes broke [33].
Suppose all have ci ≥ 105 euro on their account of the Dutch XYZ bank:
c ≥ µ. Everyone should receive at least the non-diminishment bound:
xi ≥ µi. Therefore, 1x ≥ 1µ. There are n = 104 customers so 1x ≥ 1µ =
109. The bank does not own a billion euros: E < 1µ. It should never
have promised these claims guarantees: 1x > E. So there is bankruptcy
because of 1µ > E rather than 1c > E. Fortunately, the central bank will
come to the rescue.

The following example illustrates discarding 1c− E.

Example 14 Two agents estimated their labour duration as µ = (2, 6)
hours. Their total estimated labour duration is E = 1µ = 8. They worked
c = (4, 3) so 1c < E. So x = c, that is, the accounted labour duration x1 =
4 of agent 1 is 2 hours more than the underestimate µ1 = 2 and x2 = 3 is
3 hours less than the overestimate µ2 = 6. This surplus estimate µ2−c2 =
6 − 3 = 3 went to agent 1 but the sum µ1 + 3 = 5 is capped to c1 = 4
because nobody should be awarded more than the actual labour duration.
Therefore, E − 1x = 1 is an unused surplus estimate.

G.4 Solution: Preparation

The following is a first acquaintance with the problem of finding a formula.

Example 15 The formula xi = min{ci, µi} is not a solution. For, as-
sume cj < µj for a unique claimant j. Then 1x = cj + 1µ|N\{j} would
hold, so 1x < 1µ ≤ E, that is, not all of E is distributed, which is not
Pareto optimal.

As in [41, p. 793], distinguish between demanders D := {i ∈ N | ci >
µi} and suppliers S := {i ∈ N | ci < µi}. The non-suppliers are S¬ =
{i ∈ N | ci ≥ µi}. The non-demanders are D¬ = {i ∈ N | ci ≤ µi} and
they receive xi(ci) = ci. The remainder E− 1c|D¬ is distributed over the
demanders. provided D ̸= ∅, that is, c ̸≤ µ. The claims guarantees ensure
that the remainder is non-negative: E−1c|D¬ ≥ E−1µ|D¬ ≥ E−1µ ≥ 0
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even if D¬ = ∅. This remainder consists of endowment in excess to the
total claims guarantee, E−1µ, the total surplus 1(µ−c)|S = 1(µ−c)|D¬ ,
and 1µ|D, as demanders receive at least the non-diminishment bound µi.

Introduce four desirable properties.19 Claims monotonicity: ci ≥ di
implies xi(ci) ≥ xi(di) for all i in N . (Nobody wants to invest more but
be awarded less.) Claims continuity: xi is a continuous function of ci for
all i in N . (It would be unfair or odd if an infinitesimal increase of the
claim would yield a considerably larger award.) Others-oriented claims
monotonicity [38, p. 45] or rather, antitonicity: ci ≥ c′i implies xj ≤ x′j
for all j in N \ {i}. Others-oriented claims continuity: xi is a continuous
function of cj for all i in N and j in N \ {i}. (If j gradually raises cj then
a drop in xi should be predictable.)

The outcome need not be strategy-proof because the claims are con-
sidered objective quantities.

G.5 Fixed-Path Rationing for Soft Bounds

The award is partially proportional to the claim when applying the uni-
form gains method, as follows. For i in D let ξi(λ) := min{λci, ci − µi}
for some λ and determine λ from 1ξ(λ) = E − 1c|D¬ − 1µ|D. (This
is a weighted gains having weights ci in λci which are considered ex-
ogenous.) Add ξi(λ) to the minimum award µi. So, the remainder is
distributed proportional to ci but the award will not exceed ci. Notably,
E − 1c|D¬ − 1µ|D ≥ E − 1µ|D¬ − 1µ|D = E − 1µ ≥ 0 also if D¬ = ∅.
Inserting the condition 1c|D¬ > E avoids superfluous computation of the
trivial solution:

xi(ci) =
{
µi + ξi(λ) if i ∈ D and 1c|D¬ > E
ci otherwise

So, λ is a solution of
∑

i∈D
min{µi + λci, ci} = E − 1c|D¬ . This sum

naturally extends to i in D¬, so let

χi(λ) := min{µi + ψi(λ), ci} (12)

where λci has been generalised to ψi(λ) for (non-negative) monotonous
functions ψi obeying ψi(0) = 0 for i in D. Let 1χ(λ) = E according to
Item 2 in Proposition 12. This yields λ provided D ̸= ∅ and 1c ≥ E.
(Otherwise, there is no such λ.) This is fixed-path rationing with the
N -path µi + ψi(λ) considered exogenous. Let

xi(ci) =
{
χi(λ) if 1c > E
ci otherwise

(13)

be fixed-path rationing for soft bounds. The condition D ̸= ∅ need not be
added to 1c > E in Equation 13 because if ci ≤ µi then the minimum is
xi(ci) = ci.

Example 16 Let E := 5 2
3

and c := (1, 2, 3) for µ := (2, 1, 1). Equa-

tion 13, yields λ = 5
9
and x =

(
1, 2, 8

3

)
. So, the award of agent 2 surpasses

the claims guarantee but the award still equals the claim.

19Monotonicity is in [39, p.45] and continuity is defined similarly.
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It is impossible to replace µi + ψi(λ) (for example, µi + λci) in Equa-
tion 12 with λci and increase proportionality of xi(ci) to ci, that is, have
xi(ci) = λci for i in D. For, λ ≤ 1 (awards boundedness, Equation 8).
Consider 1c > E. The case λ = 1 is excluded because it would imply
x(c) = c and thus 1x(c) > E, a contradiction. So λ < 1. But then
xi(µi) = λµi < µi, contradicting Equation 9.

Proposition 13 The fixed-path rationing for soft bounds, Equation 13,
solves the maximum allocation problem with soft bounds, is continuous and
strongly monotonous, continuous and weakly monotonous with respect to
others, and resource-monotonous.

Proof. Equation 6 if 1c > E then 1x = E by definition of x = χ and
trivially if 1c ≤ E. Equation 8, Equation 9, and (if imposed) Equation 11
because of min. Equation 7: x can not be increased because 1x = E or
x = c. Continuity: the min is continuous in ci. Right-continuity in µi

was proven in Proposition 11. Strong monotonicity: ci occurs in both
arguments of min. Continuity and strong monotonicity in ci with respect
in cj for j ̸= i: χi = E − 1χ|N\{i,j} − χj if 1c > E. However, constancy
if 1c ≤ E. Endowment-monotonicity: if E increases, λ will not strictly
decrease, so no χi(λ) will either.

Endowment-monotonicity was alread proven in Proposition 7.

G.6 Maximum Allocation for Reduction Bound-
aries

Example 16 illustrated how the case ci > µi may still yield xi(ci) = ci.
So, xi = id beyond the soft bound µi. This is undesirable if a simple
closed-form expression is sought (one without iterations and superfluous
if-statements) or agents i claiming more than µi should be ‘punished’ by
receiving less than their claim. The following elaborates on these require-
ments.

Item 1 in Proposition 12 indicates that two cases should be distin-
guished. One case is 1c ≤ E, for which the award equals the claim: x = c.
The other case is bankruptcy: 1c > E, which is considered next. Let ωi

be a number depending on the variables and typically obeying ωi ≤ µi.
Equation 9 is identical to

xi(ci) :=
{
ϕi(ci) if ci > ωi

ci if ci ≤ ωi
(14)

where ϕi is some function of ci for ci ≥ ωi (and parametrised by other
variables). The case ωi > µi is also allowed, but then ωi could replace µi.
The obvious choice ω = µ is justified as follows.

Suppose
ϕi|(ωi,ζ) ̸=id for all ζ in (ωi,∞) (15)

which is no loss of generality: For, if there were a ζ for which equality
held, then ϕi|(ζ,∞) and ζ could replace ϕi and ωi, respectively.
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If µi is the largest number such that xi|[0,µi] = id (see just before
Equation 9) then µi is called exemption boundary and if so for everyone,

µi = max{ν | xi|[0,ν] = id} for all i in N (16)

then µ is an exemption boundary profile. If also x(c) ≤ c (Equation 8) then
µi is called reduction boundary and µ the corresponding profile. Equiv-
alently, µi = inf

{
ζ ∈ (µi,Γ] | xi(ζ) < ci

}
where Γ is the largest claim

for which xi(Γ) is defined. So, µ determines aforehand, irrespective of
the claims ci, that the awards drop if the claim slightly surpasses µi.
For bankruptcy, this would be unfair if there is enough to satisfy claims
(slightly) beyond the claims guarantee µi. However, if the endowment E
is not exogenous, then imposing reduction boundaries may deter agents
from overreporting E, such as when µi is an estimated labour duration
and E = 1µ.

Proposition 14 In conclusion, ω = µ.

Proof. If ωi < µi were the case then Exemption, Equation 9, would
imply ϕi|(ωi,µi) = id, a contradiction with Equation 15. Were ωi > µi

then the definition of xi having bounds ωi, Equation 14, would yield
xi|(µi,ωi) = id, contradicting Equation 16.

Add the case 1c ≤ E again:

if 1c > E then xi(ci) :=
{
ϕi(ci) if ci > µi

ci if ci ≤ µi

if 1c ≤ E then xi(ci) := ci

The formule for 1c > E can not be used for 1c ≤ E. Suppose it would.
Consider c = (1, c2) for 2 < c2 ≤ 5 and E = 6 so x = c. Let µ = (4, 2) so
c2 > µ2 and ϕ2(c2) = c2 for all c2. So ϕ|(µ2,ζ) = id for µ2 = 2 and ζ = 5,
contradicting Equation 15. So, x = c for 1c ≤ E needs to be mentioned
separately. The two cases are combined as follows:

xi(ci) :=
{
ϕi(ci) if ci > µi and 1c > E
ci otherwise

(17)

Consider 1c > E again. As in Section G.5, the remainder after serving the
suppliers, R := E−1c|D¬ −1µ|D, is to be distributed over the demanders
i in D in addition to their minimum award µi. Suppose R is distributed
proportionally to not just ci but more generally, to ci − νi for some νi.
So ϕi(ci) = µi + (ci − νi)R/d where d is a scaling. More generally still,
suppose ϕi(ci) = µi+ρi(ci−νi)R/d, where ρi for i in D are (non-negative)
monotonously increasing functions obeying∑

i∈D
ρi(zi) =

∑
i∈D

zi for all n-vectors z (18)

that is, 1ρ(z) = 1z and in particular, ρi(0) = 0. The scaling is d = 1ρ(c−
ν) =

∑
i∈D

ρi(ci − νi), as follows from 1ϕ = 1µ|D + R. So, 1ρ(c − ν) =
1(c − ν)|D. As ϕi(λ) ↓ µi if λ ↓ µi for all i, Proposition 11, the only
possibility is νi = µi. So, let

α :=
1c− E

1(c− µ)|D
and β :=

E − 1c|D¬ − 1µ|D
1(c− µ)|D

(19)
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then (for i in D)
ϕi(ci) = ci + α(µi − ci)

= µi + β(ci − µi)
(20)

as α + β = 1. This also follows from positing that ϕi(ci) = αµi + βci
combined with ϕi(µi) = µi and 1x(c) = E. Equation 17 now defines
maximum allocation for reduction boundaries. Note that α (as well as ϕ
and ρ) are only defined if 1c > E.

Proposition 15 The α from Equation 19 obeys 0 < α ≤ 1. Formula 17 is
well-defined and solves the maximum allocation problem with soft bounds.

Proof. If 1c > E then D ̸= ∅ because D = ∅, which is equivalent to
c ≤ µ, would imply 1c ≤ E. So, the divisor 1(c−µ)|D > 0. The numerator
1c−E > 0 so α > 0. Also 1c−E ≤ 1(c− µ) = 1(c− µ)|D + 1(c− µ)|D¬

and the latter term is ≤ 0 by definition. So α ≤ 1.
The formula meets all conditions for being a solution, as follows. Sub-

balance, Equation 6: 1x = E by construction for 1c > E. If 1c ≤ E then
1x = 1c. Bounding claims, Equation 8: xi = α(µi − ci) + ci ≤ ci for
i in D and xi = ci elsewhere. Exemption, Equation 9: by design. Risk
boundary, Equation 16: would generally ϕi = ci then αµi +(1−α)ci = ci
but α > 0. Non diminishment bound: Equation 11: ϕi(µi) = µi and
1−α ≥ 1 so ϕi is non-decreasing in ci. Maximality, Equation 7: if 1c > E
then 1x = E and if 1 ≤ E then x = c so x cannot increase.

Equation 20 proves monotonicity of xi in ci. Proposition 10 and Propo-
sition 11 suffice for proving continuity.

Proposition 16 The award xi(ci) from Equation 17 is antitone and con-
tinuous with respect to cj for j ̸= i.

Proof. Define Φi(cj) = ϕi(ci) and Xi(cj) = xi(ci) to stress the
dependence of ϕi and xi on cj . Let Γj := 1(c − µ)|D\{j} − µj and
∆j := E − 1c|N\{j}, which are independent of cj . (As before, D are
the demanders, the i for whom ci > µi.) Equation 17 is

Xi(cj) =
{
Φi(cj) if ci > µi and cj > ∆j

ci otherwise

where Φi(cj) = αµi + βci for

α =
cj −∆j

1(c− µ)|D
= A(cj) :=

cj −∆j

Γj + cj

and β = 1 − α. If ci ≤ µi or cj ≤ ∆j then Xi(ci) = ci, which is a con-
stant, so continuous and antitone. Consider ci > µi and cj > ∆j . Then
D ̸= ∅ so 1(c − µ)|D ̸= 0 and α is defined. If cj ↓ ∆j then α ↓ 0, hence
Φi(cj) → ci (actually, Φi(cj) ↑ ci). So Xj = Φj is continuous in cj , in
particular, right-continuous at ∆j . Finally, for any d such that d > cj ,
a little calculus shows that A(d) > A(cj), where A(cj) is α as a function
of cj , as displayed. In Xi(cj) = Φi(cj) = (µi − ci)A(cj) + ci the factors
are µi − ci < 0 by assumption and A(cj) > 0 so Xi(d) < Xi(cj), that is,
Xi is antitone in cj .
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The case ci > µi and 1c > E also confirms endowment monotonicity:
xi = α(µi − ci) + ci where α > 0. Suppose E increases. Then α as in
Equation 19 decreases so xi increases. If 1c > E switches to 1c ≤ E then
fewer cases of xi(ci) = ϕi(ci) occur, where ϕi(ci) ≤ ci. So xi does not
decrease.
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